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INTRODUCTION

Tuna Thunnus spp. are highly migratory species that serve 
an important role as predators in oceanic ecosystems around 
the world (Duffy et  al. 2017; Miller et  al. 2018). Because 
tunas are highly valued as a food source and sport fish, many 
tuna populations have been heavily exploited by commercial 

and recreational fisheries (Collette et  al.  2011; Juan-Jordá 
et al. 2011; Pons et al. 2017). Atlantic Bluefin Tuna Thunnus 
thynnus and Southern Bluefin Tuna Thunnus maccoyii, 
Albacore Thunnus alalunga, Yellowfin Tuna Thunnus al-
bacares, and Bigeye Tuna Thunnus obesus comprise some 
of the largest global fisheries (by landings and economic 
value), and their exploitation has led to population declines 
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Abstract
Objective: An otolith-based aging approach was used to evaluate age and growth 
relationships, sexual dimorphism in growth, and derive mortality estimates for 
Blackfin Tuna Thunnus atlanticus in the Gulf of Mexico (GOM).
Methods: Blackfin Tuna (n = 395) were sampled from recreational fisheries and 
aged from 0 to 13 years, representing an increase over previous estimates of lon-
gevity for the species.
Result: Rapid growth was exhibited during the first two years of life, and the 
Richards growth function provided a better fit (L∞ = 907 mm, k = 0.112 /year, 
a = 1.05, b = 0.25) to the data compared with the von Bertalanffy growth model 
(L∞ = 824 mm, k = 0.365/year, t0 = −0.96). Sexual dimorphism in growth was ob-
served, with males (907 mm) reaching a larger L∞ than females (857 mm), and 
otolith mass was a strong predictor of age in both sexes. Estimated instantane-
ous total (Z = 0.532/year) and natural (M = 0.467 year) mortality rates for Blackfin 
Tuna in the GOM were low relative to previous estimates in the southwestern 
Atlantic, where fishing mortality (F) is likely much higher.
Conclusion: Results represent critical baseline estimates of size-at-age, longev-
ity, and natural mortality for Blackfin Tuna at relatively low levels of exploitation 
that can be used to inform future assessments.
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in different parts of the world (Juan-Jordá et  al.  2015; 
Bravington et al. 2016; Braun et al. 2023). In addition to di-
rect removals, tuna populations are also threatened by the 
degradation of pelagic ecosystems due to pollutants, habitat 
alteration, and indirect changes in the functions and struc-
ture of ecosystems caused by overfishing and climate change 
(Nicol et al. 2022; Braun et al. 2023). While there is evidence 
to suggest that improved management actions over the past 
couple of decades have led to some recovery in tuna popula-
tions targeted by directed commercial fisheries (Juan-Jordá 
et al. 2022), many smaller tuna species remain data poor and 
lacking assessment, preventing the development of similar 
management plans (Lucena-Frédou et al. 2021).

Blackfin Tuna Thunnus atlanticus are the smallest of the 
eight true tunas and are distributed in tropical and subtrop-
ical waters of the western Atlantic Ocean (Doray et al. 2004; 
Bezerra et  al.  2013; Cornic and Rooker  2018; Saillant 
et al. 2022), from the northeast coast of the United States 
to the southeastern coast of Brazil, including the Gulf of 
Mexico (GOM) and Caribbean Sea (Vieira et al. 2005). While 
Blackfin Tuna receive considerably less pressure from global 
fisheries than larger Atlantic tunas (Bluefin Tuna, Yellowfin 
Tuna, and Bigeye Tuna; Rooker et al. 2007; Lucena-Frédou 
et  al.  2021), they support locally important commercial 
and recreational fisheries, particularly at lower latitudes, 
and make up most of the artisanal catch in South America 
(Freire et al. 2005) and the Caribbean (Taquet et al. 2000; 
Doray et  al. 2004). Moreover, because Blackfin Tuna are 
an abundant tuna species throughout much of the tropical 
and subtropical western Atlantic Ocean (Cornic et al. 2018; 
Santos et  al.  2023), the species has high fishery potential 
and is likely to become increasingly targeted as stocks of 
larger tunas decline. Still, our understanding of the biology 
of Blackfin Tuna remains relatively limited throughout the 
entirety of its range. There is a clear need for baseline life 
history information, such as age and growth, mortality, and 
reproduction, to develop stock assessments and more effec-
tively manage this species (Santos et al. 2023).

Blackfin Tuna are the most abundant tuna found in 
the GOM, accounting for greater than 80% of the Thunnus 
larvae collected in long-term, fishery-independent sam-
pling efforts in the region (Cornic and Rooker 2018). Still, 
the Blackfin Tuna fishery has received significantly less 
attention from stakeholders and scientists in the GOM, 
as commercial fisheries primarily target larger Yellowfin 
Tuna. Blackfin Tuna are commonly targeted by the rec-
reational rod-and-reel fishery in the GOM (Adams and 
Kerstetter 2014; Fenton et al. 2015) because they are found 
closer to shore (Rooker et al. 2013) and are thus the most 
accessible tuna to coastal anglers. With growing threats of 
overfishing and stock depletion of larger tunas, increased 
fishing pressure on the Blackfin Tuna population is ex-
pected (Cornic and Rooker 2018), and indeed, recreational 

landings in the USA have increased by threefold since the 
1980s (Saillant et al. 2022). Despite the GOM being classified 
as an essential spawning and nursery ground for the species 
(Muhling et al. 2017; Cornic and Rooker 2018), stock status 
for Blackfin Tuna remains uncertain, due in part to the lack 
of basic life history information (Cornic and Rooker 2018).

Here, an otolith-based aging approach was used to 
characterize age, growth, and mortality relationships for 
Blackfin Tuna in the northern GOM. Otolith-based aging 
methods have been used to develop growth curves for sev-
eral tunas (Murua et al. 2017), including Atlantic Bluefin 
Tuna (Restrepo et  al.  2010), Southern Bluefin Tuna (Ku 
et  al.  2021), Yellowfin Tuna (Pacicco et  al.  2021), and 
Albacore (Wells et  al.  2013). While daily increment for-
mation has been examined for Blackfin Tuna (Doray 
et al. 2004), otolith-based estimates of age and growth are 
limited throughout their range. As a result, our understand-
ing of age–growth relationships for the Blackfin Tuna stock 
in the GOM remains relatively unknown. The primary ob-
jectives of this study were to use a multimodel approach 
to develop otolith-based age and growth relationships and 
mortality estimates for Blackfin Tuna in the GOM. Because 
tunas often exhibit sexual dimorphism (Freire et al. 2005; 
Vieira et al. 2005; Bezerra et al. 2013; Pacicco et al. 2021), 
sex-specific growth patterns in Blackfin Tuna were also ex-
amined. Given that otolith mass has been closely linked to 
age in other tunas and has great potential as a cost-effective 
alternative to counts of annual increments (Pacicco 
et  al.  2021), we also examined the relationship between 
otolith mass and age for Blackfin Tuna. Growth parame-
ters derived from best-fit models and longevity estimates 
were then used to empirically estimate natural mortality 
for Blackfin Tuna in the GOM. Information from this study 
will improve our understanding of Blackfin Tuna life his-
tory in the GOM and provide critical baseline data needed 
for stock assessment to enable management of this species.

METHODS

Blackfin Tuna were collected opportunistically in the 
north-central GOM from 2014 to 2019 (n = 393). All 

Impact statement

Blackfin Tuna are the most abundant tuna found 
in the Gulf of Mexico; however, basic life history 
information on the species is limited. This study 
characterized age and growth of Blackfin Tuna in 
the Gulf of Mexico to obtain needed estimates of 
size at age, longevity, and natural mortality.
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samples were collected from fishery-dependent sources at 
offshore ports in in the north-central GOM, with fishing 
effort focused between 10 and 150 km offshore. Blackfin 
Tuna were primarily collected from the recreational char-
ter fishery (rod and reel), although a small proportion 
of the sample was also collected from commercial (e.g., 
green stick) fisheries, where they are taken as bycatch. 
Biological information was recorded for each individual, 
including sex, weight, and curved fork length (CFL).

Sagittal otoliths were removed from each fish, cleaned 
with distilled water, stored dry in plastic centrifuge tubes, 
and inserted into a labeled coin envelope. Left otoliths 
from each fish were embedded in a 5:1 mixture of araldite 
and aradur (Huntsman) and sectioned transversely with 
diamond wafering blades on a Buehler low-speed Isomet 
saw. Two to three sections were cut to 0.5-mm thickness, 
mounted on slides (postrostrum side up) with Locktite 
UV glue cured under black lights for 15 min, and coated 
with Flotex mounting media to improve visibility. Images 
of each otolith section were taken under 20× magnifi-
cation on an Olympus SZX12 dissection scope with a 
SeBaCam5C camera (5.1 megapixels) and viewed on the 
Laxco SeBaView software at the Louisiana Department of 
Wildlife and Fisheries Age and Growth Lab, Baton Rouge, 
Louisiana. Otolith sections were then analyzed using the 
ImageJ 1.52 K software to count annual increments and 
measure distance between annuli.

Age assignment

An annual growth increment (annulus) was defined as one 
successive translucent and opaque zone, and ages were esti-
mated from counts of opaque zones. Counts were made start-
ing from the core to the edge of the otolith along the inner 
margin of the otolith ventral branch, and an opaque zone at 
the otolith edge was only counted if complete. Because the 
first annulus is often difficult to identify in tunas, we devel-
oped a “yardstick” based on the mean distance from the oto-
lith core to the first annulus measured by three independent 
readers from a random set of otoliths (Secor et al. 2014; Lang 
et al. 2017; Pacicco et al. 2021). This “yardstick” served as 
a guide in identification of the first annulus on subsequent 
otoliths. This measurement was compared qualitatively 
with measurements and daily increment counts from Doray 
et  al.  (2004) to identify the location of the first increment. 
While annual increment formation has not yet been directly 
validated for Blackfin Tuna, annual aging methods have 
been validated for several closely related congeners (Ishihara 
et al. 2017; Murua et al. 2017; Andrews et al. 2020), suggest-
ing that age estimates are likely to be accurate.

Sections were read separately by at least two readers. To 
reduce biases, counts were made without the knowledge 

of fish size, sex, or previous counts. When counts differed 
between the two readers, the first reader conducted a third 
reading. For otoliths where an agreement between readers 
could not be immediately reached, the otolith was read 
by a third reader and a final increment count was agreed 
upon by all three readers. Edge codes were assigned to 
each otolith, where 1 indicated <0.33% of the next translu-
cent zone had formed, 2 indicated 0.33–0.66%, and 3 indi-
cated >0.66% of the zone had been formed. Index average 
of percent error (IAPE) was calculated to compare repro-
ducibility of ages between readers (Beamish and Fournier 
1981):

where N is the number of fish aged, R is the number of 
readings for each fish, Xij is the ith age determination of 
the jth fish, and Xj is the mean age calculated for the jth 
fish.

Measurements were taken from the core to the dis-
tal edge of the opaque zone of each annulus at the inner 
margin of the otolith ventral branch (Figure  S1 in the 
Supplement available separately online). Marginal incre-
ment analysis was utilized to identify the seasonal pattern 
of opaque zone deposition, and the marginal increment 
ratio was added to the increment count to achieve a frac-
tional age for each individual (Lang et  al.  2017). Given 
the variation in birth date and potential asynchrony be-
tween birth date and timing of increment formation, re-
sulting age estimates are approximate (Farley et al. 2006). 
Marginal increment ratio (MIR) was calculated using the 
following formula:

where Md is the distance from the core to the otolith edge 
(margin), LAd is the distance from the core to distal edge 
of the last annulus, and SLAd is the distance from the core 
to the second to last annulus. Because growth is rapid and 
the distance between opaque zones decreases substan-
tially across the first three annual increments, using the 
width of the previous increment as the denominator is 
likely to serially underestimate MIR in young fish. As a 
result, we used the third quartile distance (across all oto-
liths) between the first and second (215.15 μm), second 
and third (144.59 μm), and third and fourth (121.40 μm) 
opaque zones as the denominator in the MIR equation for 
age-1, age-2, and age-3 fish, respectively, based on Lang 
et al. (2017). Mean MIR ± SD was used to examine annual 
increment formation across quarters (seasons; Zaboukas 
and Megalofonou  2007; Koob  2020), where Q1 = the 

IAPE=
1

N

N∑

j=1

[
1

R

N∑

i=1

|Xij−Xj |
Xj

]
,

MIR =
Md − LAd(
LAd − SLAd

) ,
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months of January–March, Q2 = April–June, Q3 = July–
September, and Q4 = October–December. Ages 1–5 were 
used in the model to reduce biases from older individuals, 
where the increment width is narrower (Gunn et al. 2008; 
Koob 2020).

Otolith mass

Sagittal otoliths were weighed to the nearest 0.0001 g to ex-
amine the relationship between otolith mass and biologi-
cal age. Samples of age-0 fish with unknown sex (n = 26) 
were included in the models for both female and males 
to better anchor the relationship at younger ages. Using 
a linearized power function, otolith mass was plotted as a 
function of biological age to predict age following Pacicco 
et al. (2021):

where ln(age) is the natural log of the estimated age, 
ln(otolith mass) is the natural log of otolith mass (g), a is 
the scaling coefficient, and b is the allometric scaling expo-
nent. Similarly, ln(CFL) was used to predict ln(age) using 
the same equation (substituting “CFL” for “otolith mass”) 
to contrast the predictive ability of CFL and otolith mass on 
biological age. The Akaike information criterion corrected 
for small sample sizes (AICc; Sugiura 1978) was used to com-
pare model fit for simple linear regressions of otolith mass 
and CFL to see which model was a better predictor of fish 
age. Sample size was restricted (n = 245) for both models 
(CFL and otolith mass) to include only those individuals for 
which an otolith mass was available. Analysis of covariance 
(ANCOVA) was used to test for sex-specific differences in 
the relationship between otolith mass and age. Significance 
was determined at α < 0.05 for all tests.

Growth curves

Growth was evaluated with two different models: the von 
Bertalanffy growth model (VBGM; von Bertalanffy 1938) 
and the Richards growth function (Richards 1959). Length 
at age for Blackfin Tuna (n = 393) was first fitted using the 
VBGM due to its widespread use in modeling tuna age and 
growth (Shuford et al. 2007; Adams and Kerstetter 2014; 
Lang et  al.  2017), which allowed for direct comparison 
of parameters among similar taxa. Additionally, sepa-
rate growth curves were examined for each sex (n = 270 
males, n = 84 females) to investigate sexual dimorphism. 
Immature age-0 individuals with unknown sex (n = 26) 
were included in both models to anchor each sex-specific 
growth curve at the origin, and AICc was used to assess 

model fit. Sex-specific models were evaluated by com-
paring the AICc value from the pooled curve data to the 
sum of the AICc values from the sex-specific models 
(Williams et  al.  2012). The VBGM followed the typical 
parametrization:

where t is the estimated age (years), Lt is the estimated mean 
CFL (mm) at age t, L∞ is the mean maximum (asymptotic) 
CFL, k is the growth coefficient (year−1), and t0 is the theo-
retical age (years) when the fish had a length of zero.

While age and growth in tunas is typically charac-
terized by the VBGM, recent studies indicate that the 
Richards model often better represents growth in a variety 
of taxa, including tropical tunas (Farley et al. 2020; Flinn 
and Midway 2021; Pacicco et al. 2021). Thus, the Richards 
growth function was also fitted to length at age for Blackfin 
Tuna (n = 393) in the current study. Sex-specific differ-
ences in age–growth relationships were also explored with 
the Richards growth function using the same methodol-
ogy as the VBGM, where immature individuals (n = 26) 
were included in both models to “anchor” the curve. The 
Richards growth function has many parameterizations, 
and here we used a four-parameter model (Tjørve and 
Tjørve 2010):

where L∞ is the mean maximum (asymptotic) CFL, k is the 
growth coefficient, and a and b are dimensionless param-
eters that control the horizontal (age) and vertical (size) 
inflection point position, respectively.

Growth parameters for both models were estimated 
using nonlinear least squares (nls) regression with the 
Fisheries Stock Analysis (FSA; Ogle  2018) and minpack.
lm (Elzhov et  al.  2016) packages in R version 4.1.1 (R 
Core Team 2021). Model fits were contrasted between the 
VBGM and Richards curve, as well as sex-specific versus 
pooled models for each method, using AICc. Bootstrapped 
resampling (999 iterations) was used to derive confidence 
intervals (95%) for parameters in each model using the nl-
stools package in R (Baty et al. 2015).

Mortality

The total instantaneous mortality rate (Z) was calculated 
from regression analysis of cross-sectional catch curves 
of age frequency data using the fishmethods package in 
R (Gary 2021). The natural-logarithm-transformed fre-
quency at each age was plotted against age, and a linear 
regression was run on the descending limb of the catch 

ln(age) = ln(a) + b ⋅ ln(otolith mass),

Lt = L∞

[
1 − e−k(t−t0)

]
,

Lt = L∞
[
1−ae(−kt)

]b
,

 19425120, 2024, 3, D
ow

nloaded from
 https://afspubs.onlinelibrary.w

iley.com
/doi/10.1002/m

cf2.10293, W
iley O

nline L
ibrary on [10/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  5 of 15AGE AND GROWTH OF BLACKFIN TUNA

curve, beginning with the age with the highest frequency 
(Sanchez and Rooker 2021).

Several empirical methods were used to estimate nat-
ural mortality (M) based on recommendations outlined 
by Then et  al. (2015). Longevity (n = 2) and growth-
based (n = 2) methodologies were examined. Methods 
used based on maximum age (tmax) included the updated 
Hoenig  (1983) method and the Hoenignls equation de-
scribed by Then et  al. (2015), while methods based on 
growth parameters included the modified Paulynls-T and 
modified one-parameter K estimator also described by 
Then et al. (2015). Hoenig's  (1983) linear estimator (up-
dated by Then et al. 2015) was calculated as follows:

In contrast, the Then et al. (2015) equation (Hoenignls) 
using maximum age (tmax) is given as follows:

The modified Paulynls-T equation described by Then 
et al. (2015) is modified from Pauly's (1980) equation and 
uses the parameters L∞ and K:

Finally, the one-parameter K equation described 
by Then et al. (2015) is based on the Beverton and Holt 
life history invariant equation (Beverton and Holt  1959; 
Charnov 1993):

The modified Then et  al. (2015) equation (Hoenignls) 
has been adopted by the International Commission for the 
Conservation of Atlantic Tunas (ICCAT) for tuna assess-
ments and is generally recommended for empirical estima-
tions of M. Because natural mortality is likely not constant 
throughout life, M estimated from the Then et al. (2015) 
equation was used as baseline M and scaled across age-
classes using the VBGM parameters and Lorenzen (2005) 
methodology. This methodology for estimating baseline M 
and scaling across age-classes is currently used by ICCAT 
(ICCAT 2019; Pacicco et al. 2021) for other Thunnus spe-
cies and was chosen here to be comparable to other tuna 
stocks in the Atlantic.

RESULTS

Blackfin Tuna were collected in all months, with ap-
proximately 95% of samples collected from the rec-
reational rod-and-reel fishery (n = 374) and 5% (n = 19) 

from the commercial fishery. The sex ratio was skewed 
towards male fish, with males accounting for 69.7% 
(n = 270) of specimens, females accounting for 21.4% 
(n = 84), and unknown sex accounting for 9.9% (n = 39). 
This sex ratio was relatively consistent across months 
(Figure  S2); however, the ratio of females and males 
was similar in younger age-classes (1–3 years old; chi-
square: p > 0.05) (Figure S2). The observed size distribu-
tion for all Blackfin Tuna (combined sexes) in the sample 
ranged from 251 to 911 mm CFL, with a mean ± SE of 
715.7 ± 7.2 mm. Male CFL ranged from 490 to 911 mm 
(mean ± SE = 764.5 ± 5.3 mm), while female CFL ranged 
from 434 to 870 mm (mean ± SE = 691.8 ± 12.1 mm) 
(Figure S3). Individuals of unknown sex ranged from 251 
to 870 mm CFL (mean ± SE = 429.4 ± 27.0 mm); however, 
it should be noted that the vast majority of individuals 
(>82%) classified as unknown sex were young (age 0 or 
age 1) and likely immature.

Age determination

Age was estimated for a total of 393 Blackfin Tuna, com-
prised of 84 females, 270 males, and 39 unknown sex. 
The distance from the core to the first opaque zone rep-
resented the widest annulus, with distance between an-
nuli decreasing with increasing age (particularly across 
the first 4 years). Similar to other tunas (Farley et al. 2006; 
Andrews et  al.  2020; Pacicco et  al.  2021), the first three 
opaque zones were relatively diffuse, becoming narrower 
and more clearly defined with age. Age estimates ranged 
from 0 to 13 years (for both sexes), although most individ-
uals were younger than 9 years old, with 41.7% between 
6 and 8 years old. Overall, age 6 and 7 were the most fre-
quently observed age-classes (13.9% each), followed by age 
8 (13.7%) and age 9 (10.4%). Agreement in annuli counts 
between readers was high (average percent error < 5.7%), 
and greater than 55% of otolith readings were identical, 
with over 88% differing by 1 year or less.

Edge type and MIR were used to identify seasonal pat-
terns in annual increment deposition. The MIR differed 
across seasons (ANOVA: F3,140 = 4.789, p < 0.05) and was 
generally lowest in winter (quarter 1: January through 
March; Figure S4). While MIR increased throughout the 
year, variability was observed in all seasons. Similarly, the 
proportion of edge code 1 peaked during winter and de-
creased through subsequent seasons.

Growth models

The VBGM parameters for the pooled (both sexes) 
model were L∞ = 824 mm CFL (95% CI = 813 to 835 mm), 

ln(M) = 1.717 − 1.01 ⋅ ln
(
tmax

)

M = 4.899−0.916tmax

M = 8.87 K0.73L−0.33
∞

M = 1.692 K
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k = 0.365/year (95% CI = 0.329 to 0.401), and t0 = −0.96 (95% 
CI = −1.16 to −0.76) (Table 1). Sex-specific VBGMs were 
also explored, and separate models for male and female 
Blackfin Tuna resulted in an improved model fit (summed 
AICc) relative to a single pooled model (∆AICc = 184.72). 
The L∞ estimates ± 95% CI for males (832 ± 22.6 mm) ex-
ceeded that for females (776 ± 32.8 mm) by greater than 
50 mm (Table 1; Figure 1); however, females exhibited a 
higher growth coefficient (0.47/year) than males (0.37/
year) (Table 1).

Interestingly, the Richards growth function (AICc 
= 4026.41) was a better fit to the Blackfin Tuna data 
than the VBGM (AICc = 4108.68) (Figure  2). The over-
all parameterizations for the Richards growth function 
were L∞ = 907 mm (95% CI = 866 to 965 mm), k = 0.112/
year (95% CI = 0.072 to 0.167), a = 1.05 (95% CI = 1.03 to 
1.07), and b = 0.25 (95% CI = 0.23 to 0.29). Similar to the 
VBGM, sex-specific growth models resulted in a bet-
ter fit (∆AICc = 31.57), and the L∞ estimate ± 95% CI 
for males (907 ± 90.3 mm) exceeded that for females 
(857 ± 127.3 mm) by 50 mm (Figure  3; Table  1). In con-
trast to the VBGM, all other parameters for the Richards 
growth function were similar between females and males. 
Sex-specific differences in predicted length at age were 
minimal in the first few years of life and became more ev-
ident starting at age 3 (Table 2).

Otolith mass

A significant relationship was detected between the natu-
ral log of otolith mass and the natural log of age for both 
sexes when pooled together (r2 = 0.91, df = 243, p < 0.05) 
(Figure 4A), suggesting that otolith mass was a strong pre-
dictor of age in Blackfin Tuna. The linearized power func-
tion for both sexes pooled was

where a = 1.244 ± 0.02 (mean ± SE) and b = 6.287 ± 0.08. 
Similarly, a significant relationship between otolith mass 
and age was also detected for separate regressions for 
females (r2 = 0.95, df = 60, p < 0.05) and males (r2 = 0.92, 
df = 177, p < 0.05) (Figure 4B,C). Sex-specific differences 
in the relationship between ln(age) and ln(otolith mass) 
were also observed (ANCOVA: F1,244 = 46.69, p < 0.05). 
The relationship between length and age was also ex-
amined in a linearized power function to contrast the 
predictive ability of length and otolith mass on age for 
Blackfin Tuna. The natural log of CFL was also a good 
predictor of the natural log of age for all individuals 
(r2 = 0.84, df = 243, p < 0.05), with the linearized function 
as follows:

ln(age) = ln(1.244) + 6.287 ⋅ ln(otolith mass),

ln(age) = ln(3.060) − 18.362 ⋅ ln(CFL),

T A B L E  1   Von Bertalanffy growth model (VBGM) and Richards parameter estimates for Blackfin Tuna in the Gulf of Mexico, as well 
as for females and males separately. Parameter abbreviations are as follows: L∞ = average maximum asymptotic length (mm), k = growth 
coefficient (year−1), t0 = theoretical age (years) when the fish had a length of zero, and a and b are dimensionless parameters that control the 
horizontal (age) and vertical (size) inflection point position, respectively.

Growth model Parameters All (n = 393) Females (n = 84) Males (n = 270)

VBGM L∞ 824 776 832

k 0.365 0.474 0.371

t0 −0.960 −0.531 −0.825

Richards L∞ 907 857 907

k 0.112 0.123 0.123

a 1.05 1.06 1.06

b 0.25 0.26 0.27

F I G U R E  1   Von Bertalanffy growth model fits and 
bootstrapped 95% confidence intervals (represented by the shaded 
polygons) showing length at age for female (orange; n = 84) and 
male (blue; n = 270) Blackfin Tuna in the northern Gulf of Mexico.
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      |  7 of 15AGE AND GROWTH OF BLACKFIN TUNA

where a = 3.060 ± 0.084 (mean ± SE) and b = −18.362 ± 0.56. 
Still, otolith mass explained about 7% more of the variance 
in age than did CFL (r2 = 0.91 versus 0.84, ΔAICc = 145.95).

Mortality

Total instantaneous mortality (Z) estimated from the de-
scending arm of the catch curve was 0.532 (95% CI = 0.382 
to 0.683) (Figure 5). Natural mortality (M) calculated using 
different empirical methods, based on either maximum 
age or growth parameters, was variable and ranged from 

0.189 to 0.467 (Table 3). The tmax based estimators resulted 
in M estimates of 0.467 (modified Hoenig approach from 
Then et al. 2015) and 0.417 (Hoenig 1983 approach) based 
on a tmax = 13 from this study. The growth-based estima-
tors resulted in the lowest M estimate of 0.189 (Paulynls-T 
approach) and 0.190 (one-parameter K approach). The 
modified Hoenig estimate of 0.467 was used as the base-
line value (baseline M) to scale Lorenzen M across age-
classes using the VBGM parameters for all observations. 
Lorenzen M scaled across age-classes ranged from 1.02 at 
age 0 to 0.41 at age 13, with a sharp decline in M over the 
first 4 years of life (Figure 6; Table S1 in the Supplement 
available separately online).

DISCUSSION

Blackfin Tuna in this study were estimated to be over 
13 years old, representing a substantial increase (~6 years) 
in maximum estimated age compared with previous esti-
mates (Adams and Kerstetter 2014). Still, this is not sur-
prising given that previous otolith-based age estimates 
for Blackfin Tuna are scarce and limited in sample size 
(Adams and Kerstetter 2014) and size distribution (Doray 
et al. 2004). Moreover, recent age validation analyses sug-
gest that both temperate and tropical tunas have greater 
longevity than previously believed (Restrepo et al. 2010; 
Andrews et al. 2020), resulting in increased maximum age 
estimates for several tunas, including congeners in the 
GOM (Pacicco et al. 2021). While the longevity of Bluefin 
Tuna can exceed 30 years (Ailloud et al. 2017), estimates 
of maximum age for Blackfin Tuna from the current study 
(13+ years) are in accord with recent estimates for other 
Thunnus species, including Yellowfin Tuna (15–18 years; 
Andrews et al. 2020; Farley et al. 2020; Pacicco et al. 2021), 
Bigeye Tuna (15–18 years; Farley et  al.  2006; Andrews 
et  al.  2020; Farley et  al.  2020; Waterhouse et  al.  2022), 
Longtail Tuna Thunnus tonggol (18 years; Griffiths 
et al. 2010), and Albacore (13–15 years; Wells et al. 2013). 
Thus, this study provides a realistic estimate of longevity 
for Blackfin Tuna that is similar to other tunas of similar 
body size (i.e., Albacore) and reasonable relative to larger 
bodied congeners which might be expected to have longer 
lifespans.

Age and growth relationships for Blackfin Tuna in 
the GOM were best described by the Richards growth 
function. While the VBGM is still the most widely ap-
plied model to describe growth in Thunnus species 
(Murua et  al.  2017), several recent studies have simi-
larly demonstrated that the Richards model (or deriva-
tions of it) provides a better fit to length-at-age data for 
a range of taxa, including Yellowfin Tuna in the GOM 
(Pacicco et  al.  2021), Bigeye Tuna in the western and 

F I G U R E  2   Fits for the von Bertalanffy (VBGM; purple) and 
Richards (yellow) growth models of length at age for Blackfin Tuna 
in the northern Gulf of Mexico.

F I G U R E  3   Richards growth model fits and bootstrapped 95% 
confidence intervals (represented by the shaded polygons) showing 
length at age for female (orange; n = 84) and male Blackfin Tuna 
(blue; n = 270) in the northern Gulf of Mexico.
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8 of 15  |      GUTIERREZ et al.

central Pacific (Farley et al. 2020), Bluefin Tuna in the 
Atlantic (Ailloud et  al.  2017), and Longtail Tuna from 
the Indo-Pacific (Griffiths et al. 2010). Similar to other 
tunas, Blackfin Tuna exhibit rapid growth during the 
first year of life followed by slower growth after age 2, 
which is likely related to the onset of sexual maturity 
(Vieira et al. 2005). The Richards model allows for the 
possibility of multiple inflection points, which gives the 
model flexibility to account for younger individuals in 
the population and the fast-growing pattern at earlier 
stages that is typical of tuna life history, while the VBGM 
assumes a slower growing pattern at earlier stages of life 
resulting in a flatter curve (Griffiths et al. 2010). Similar 
to other studies, the Richards model also produced a 
higher and more realistic estimate of L∞ for Blackfin 
Tuna (907 mm) that was within 1% of the largest fish 
in the study (911 mm), while estimates from the VBGM 
were considerably lower (832 mm). The finding that the 
Richards function also produced lower estimates of k 
than the VGBM is consistent with previous tuna stud-
ies that incorporated both models (Griffiths et al. 2010; 
Farley et al. 2020; Pacicco et al. 2021) and would be ex-
pected given that these parameters are negatively cor-
related (increase in L∞ would be expected to result in a 
lower estimate of k).

Tunas are considered among the fastest growing 
marine fishes and are capable of reaching large body 
sizes (Murua et  al.  2017). Although growth parame-
ter estimates for Blackfin Tuna are limited, growth pa-
rameters from this study differed from previous work. 
Blackfin Tuna in the GOM exhibited slower growth 
(k = 0.112 versus 0.28/year) and reached a shorter 

(albeit similar) mean asymptotic length (L∞ = 907 ver-
sus 954 mm) relative to those in the Straits of Florida 
(Adams and Kerstetter  2014). Even smaller asymptotic 
lengths (559–785 mm) have been reported for Blackfin 
Tuna in the Caribbean, but these were estimated from 
primarily young fish using daily aging methods (<3 years 
old; Doray et al. 2004), which likely biased L∞ estimates 
towards a smaller theoretical maximum. While a k of 
0.112/year might seem relatively low for a tuna species, 
it should be noted that parameters estimated by Adams 
and Kerstetter (2014) were from the VBGM rather than 
Richards, and estimates of k from the VBGM in the current 
study (k = 0.37/year) were actually higher in comparison 
(resulting in a lower L∞ estimate). In addition, similarly 
low growth coefficients have been reported for congeners 
in temperate and tropical areas, such as Atlantic Bluefin 
Tuna (0.06–0.20/year; reviewed in Ailloud et  al.  2017; 
Murua et  al.  2017), Southern Bluefin Tuna (0.11–0.19/
year; Gunn et al. 2008; reviewed in Murua et al. 2017), 
Albacore (0.16/year; Wells et al. 2013), and Bigeye Tuna 
(0.18/year; Farley et al. 2006), suggesting that relatively 
slow growth is not uncommon in tunas. In contrast, 
growth coefficients for other tropical tunas such as 
Yellowfin Tuna (0.25–0.39/year; Lang et al. 2017; Farley 
et al. 2020; Pacicco et al. 2021), Bigeye Tuna (0.24/year; 
Farley et al. 2006), and Longtail Tuna (0.23/year; Griffiths 
et al. 2010) were considerably higher than those reported 
for Blackfin Tuna in the current study. This discrepancy 
could be explained by the fact that Yellowfin, Bigeye, and 
Longtail tunas reach larger theoretical maximum sizes 
(>L∞) than Blackfin Tuna over a relatively similar (or 
slightly longer) lifespan. For example, Yellowfin Tuna in 

T A B L E  2   Median curved fork length at age (CFL) from bootstrapped resampling (n = 999) and 95% confidence intervals (95% CI) for 
Blackfin Tuna pooled (general) and by sex (females and males) using the Richards growth function parameters.

Ages

General Females Males

CFL 95% CI CFL 95% CI CFL 95% CI

1 444 433–454 427 413–439 442 430–453

2 570 562–577 550 538–563 572 563–581

3 638 631–645 617 604–631 643 635–651

4 685 678–692 662 650–676 691 684–700

5 720 713–726 695 684–708 727 721–735

6 747 741–753 721 710–732 755 749–762

7 769 764–774 741 731–751 778 773–783

8 788 783–792 758 749–767 796 792–801

9 803 798–807 772 761–782 812 807–817

10 816 810–821 783 770–795 824 818–831

11 827 819–833 793 778–807 835 828–843

12 836 827–844 801 784–818 845 835–854

13 844 834–854 808 788–828 853 841–864
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      |  9 of 15AGE AND GROWTH OF BLACKFIN TUNA

the GOM achieve an L∞ (1632 mm) almost double that 
of Blackfin Tuna in 18 years (compared to 13 years for 
Blackfin Tuna). Finally, it should be noted that VBGM 
is by far the most widely used model and often produces 
high estimates of k (see Griffiths et  al.  2010; Farley 
et  al.  2020; Pacicco et  al.  2021). To that extent, esti-
mates of k for Blackfin Tuna from the VBGM here (0.37/
year) were actually quite similar to those estimated for 

Yellowfin Tuna (0.35/year) and Bigeye Tuna (0.39/year) 
with the VBGM (Farley et al. 2020; Pacicco et al. 2021).

Sexual dimorphism is relatively common in ma-
rine fishes and has been documented in several tunas 
(Schaefer  2001; Gunn et  al.  2008; Williams et  al.  2012; 
Kolody et al. 2016; Pacicco et al. 2021). Male Blackfin Tuna 
in the current study reached greater mean maximum size 
than females, with size differences becoming apparent 
between age 1 and age 2 and increasing with age. Similar 
sex-specific differences in growth (males reaching larger 
sizes) have been documented for Blackfin Tuna in other 
age and growth studies from the Caribbean (Garcia-Coll 
et al. 1984) and the East Coast of the United States (Adams 
and Kerstetter  2014). Likewise, this pattern appears to 
be consistent across a range of tuna species, with males 
reaching larger sizes than females in Bigeye Tuna (Farley 
et  al.  2006), Atlantic Bluefin Tuna (Rooker et  al.  2007), 
Southern Bluefin Tuna (Gunn et  al.  2008; Lin and 
Tzeng 2010), Albacore (Williams et al. 2012), and Yellowfin 
Tuna (Schaefer 1998; Pacicco et al. 2021). Several factors 
may drive sex-specific differences in growth, although it 
appears likely that this phenomenon is related to the onset 
of sexual maturity after which females invest more energy 
in reproduction relative to somatic growth (Glazier 1999; 
Lin and Tzeng  2010; Shih et  al.  2014). Indeed, Blackfin 
Tuna become sexually mature between 1 and 2 years of age 
(Bezerra et al. 2013), which corresponded closely with the 
observed divergence in sex-specific length at age.

Blackfin Tuna collected from recreational fisheries in 
the northern GOM were predominately male (~3:1 sex 
ratio). While this could reflect a bias for males in the rec-
reational fishery due to spatial segregation or sex-specific 
vulnerability to fishing gear (Maunder et al. 2016), simi-
lar male-dominated sex ratios (range of ~2:1 to 4:1) have 
been observed for Blackfin Tuna throughout their range 
in the western Atlantic Ocean (Brazil to the United 

F I G U R E  4   Biological age as a function of whole otolith weight 
for (A) all individuals (gray; n = 245; r2 = 0.91; p < 0.05), (B) female 
Blackfin Tuna (orange; r2 = 0.95; p < 0.05), and (C) male Blackfin 
Tuna (blue; r2 = 0.92; p < 0.05).
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F I G U R E  5   The natural log (ln) of catch frequency by age-
class was regressed against age (years) for Blackfin Tuna sampled 
from fisheries in the northern Gulf of Mexico. Total instantaneous 
mortality (Z) was estimated from the descending arm of the catch 
curve and is represented by the slope (Z = 0.53).
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States) (Freire et  al.  2005; Vieira et  al.  2005; Bezerra 
et  al.  2013; Adams and Kerstetter  2014). Other tunas 
typically exhibit sex ratios close to 1:1 early in life, with 
an increasing skew towards male dominance at larger 
sizes (Schaefer  2001). Similarly, female Blackfin Tuna 
were more prevalent (~1:1) at younger ages (0–2) in the 
current study, with a shift towards male dominance be-
ginning at age 3. Several factors may contribute to the 
increasing dominance of males with age in tunas, in-
cluding female predation during spawning, vulnerabil-
ity to fishing gear, higher natural mortality in females, 
male hostility during courtship, or sexual dimorphism 
(Garcia-Coll et al. 1984; Schaefer 1998). Given that fe-
male Blackfin Tuna reach smaller maximum sizes, it 
is possible that females have higher size-based natural 
mortality than males. Still, it seems likely that this dis-
crepancy is related to spawning or sexual maturity, as 
the shift in sex ratio to male dominance occurred just 
after the expected onset of sexual maturity in Blackfin 

Tuna (age 1–2; Bezerra et  al.  2013). Blackfin Tuna are 
also smaller and reach sexual maturity earlier than 
larger tunas, which might explain why the observed 
shift in sex ratio occurs relatively early for Blackfin Tuna 
relative to congeners.

Seasonal patterns in MIR and edge type analysis ob-
served here suggest that opaque (slow growth) zones 
are deposited during winter (January through March). 
While patterns in both MIR and edge type were not 
unequivocal, the observed pattern is corroborated by 
Adams and Kerstetter (2014), who also proposed that in-
crements were formed during winter for Blackfin Tuna 
in the Straits of Florida. Winter deposition of the annual 
opaque zone has also been documented for Yellowfin 
Tuna in the GOM (Lang et  al.  2017) and Bluefin and 
Bigeye tunas in other basins (Farley et  al.  2006; Gunn 
et al. 2008), suggesting that periods of slow growth (in 
tuna otoliths) are likely more closely linked to cooler 
water temperatures rather than spawning (summer). 
Still, variability in marginal increment ratio patterns 
is not uncommon in tropical tunas and may simply re-
flect migratory behavior, prolonged spawning seasons, 
or individual variability in increment formation (Farley 
et  al.  2006). For example, temporal patterns in annuli 
formation may vary among regions (subtropical versus 
tropical) and the mixing of migrants and residents could 
confound seasonal patterns. In contrast, variability 
could be a result of imprecision in measurements due to 
diffuse banding during the first few years (also observed 
here and in other tunas) or inconsistencies in resolution 
at the otolith edge (Campana 2001). Finally, increment 
analysis is best performed on younger individuals before 
annuli become more compressed, and the inclusion of 
older fish (up to age 5) to achieve appropriate samples 
sizes in this study could have also contributed to ob-
served variability.

Otolith mass has been shown in multiple stud-
ies to be a reliable predictor of age in marine fishes 
(Cardinale and Arrhenius  2004; Gunn et  al.  2008; 
Griffiths et  al.  2010; Pacicco et  al.  2021) and may pro-
vide a cost-effective alternative to increment counts in 
areas that lack the resources needed to conduct otolith-
based aging (Cardinale and Arrhenius  2004; Williams 
et al. 2015). Linear (Griffiths et al. 2010) and curvilinear 
or linearized power functions (Gunn et al. 2008; Pacicco 

T A B L E  3   Empirical estimates of natural mortality (M) for Blackfin Tuna based on maximum age (n = 2) and growth parameters (n = 2).

Natural mortality (M) Equation Parameters used Source

0.467 M = 4.899−0.916
tmax

Maximum age Then et al. (2015)

0.417 ln(M) = a − b ln(tmax) Maximum age Hoenig (1983)

0.189 M = 8.87 K0.73 L−0.33
∞

Growth parameters Pauly (1980)

0.190 M = aK Growth parameters Beverton and Holt (1959)

F I G U R E  6   Natural mortality (M) for Blackfin Tuna scaled 
with Lorenzen natural mortality (Lorenzen M) for all observations 
(gray; n = 393) across age-classes and for females (orange) and 
males (blue).
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et al. 2021) have been used to describe relationships be-
tween otolith mass and age in tunas, with the latter typ-
ically producing a better fit. Here, a strong relationship 
(r2 = 0.91) between otolith mass and age was observed 
for Blackfin Tuna in the GOM using a linearized power 
function, suggesting that otolith mass could be an effec-
tive tool for estimating age for the species. Interestingly, 
the fit was nearly identical to those described for oto-
lith mass and age for Southern Bluefin Tuna (0.90; Gunn 
et al. 2008) and Yellowfin Tuna (0.91; Pacicco et al. 2021) 
using either curvilinear or linearized power functions, 
which could indicate that otolith morphology may be a 
similarly useful predictor of age for a variety of tunas. 
The method was also a strong predictor of age for both 
females (r2 = 0.95) and males (r2 = 0.92) individually; 
however, similar to recent findings with Yellowfin Tuna 
(Pacicco et  al.  2021), differences between the sexes 
appears to be biologically minimal. While the devel-
opment of the otolith mass–age relationship is solely 
dependent on correct age determination through annuli 
counting (Cardinale and Arrhenius  2004), these find-
ings provide support to the growing body of evidence 
that otolith mass and age are tightly coupled (Cardinale 
and Arrhenius  2004; Gunn et  al.  2008; Sanchez and 
Rooker  2021). Given that many Blackfin Tuna are tar-
geted in artisanal and subsistence fisheries in much of 
their range, the ability to estimate age from otolith mass 
could greatly improve existing information on growth, 
age composition, and mortality needed to assess stocks 
in regions where otolith-based aging techniques are not 
possible.

Estimates of mortality are important inputs for stock 
assessments and are extremely limited or nonexistent for 
Blackfin Tuna throughout most of the western Atlantic 
Ocean, including the GOM. Here, the total instantaneous 
mortality for Blackfin Tuna calculated from catch curves 
was 0.532/year. This appears to be the first estimate of 
Z for Blackfin Tuna in the GOM, and it was consider-
ably lower than the Z (2.34/year) estimated for Blackfin 
Tuna in northeastern Brazil (Freire et al. 2005). This dis-
crepancy could be explained by the fact that estimates 
by Freire et al.  (2005) were based on younger fish (age 
0–5 years) than in the current study (0–13 years) and col-
lected in an area where the species is targeted directly 
in a substantial handline fishery (fishing mortality, 
F = 1.40/year). In contrast, Blackfin Tuna are not directly 
targeted by commercial fisheries in the GOM and are 
typically captured in recreational fisheries where the 
targeted catch is Yellowfin Tuna. Thus, we might expect 
total instantaneous mortality in the GOM to be more 
reflective of natural mortality than fishing mortality. 
Empirical estimation of natural mortality can be highly 
variable, and here the use of four empirical estimators 

produced estimates ranging from 0.189 to 0.467/year 
(mean = 0.316/year). In a recent evaluation of the pre-
dictive performance of empirical estimators, Then et al. 
(2015) recommended the use of an updated tmax-based 
estimator (Hoenignls; M = 4.899−0.916

tmax
) and suggested 

that computing a mean of multiple estimators offered 
little additional benefit. This methodology has also been 
adopted by ICCAT for other Atlantic tuna assessments 
(ICCAT 2019) and was recently used to estimate M for 
Yellowfin Tuna in the GOM (Pacicco et al. 2021). Thus, 
the M estimate for Blackfin Tuna of 0.467/year computed 
using the Then et al. (2015) equation is most compatible 
with statistical recommendations and practical applica-
tion for assessments. Regardless of the method used, nat-
ural mortality estimates for Blackfin Tuna in the GOM 
were low relative to previous estimates from Brazil (0.90/
year), which is likely reflective of the relatively young 
age distribution of fish (age 1–5) in their sample. Natural 
mortality is typically high in early life stages and esti-
mates for M based on Lorenzen's methodology scaled 
across age were comparable over similar size ranges in 
the first few years of life (0.51–1.02/year). Finally, given 
that Yellowfin Tuna have longer life spans and reach 
larger sizes than Blackfin Tuna, it is not surprising that 
estimates of M for Blackfin Tuna (0.467/year) exceeded 
recent estimates of M for Yellowfin Tuna in the GOM 
(0.35/year) (Pacicco et al. 2021).

Age structure is often reflective of population sustain-
ability (Berkeley et al. 2004), and the age composition of 
Blackfin Tuna captured in recreational fisheries in the 
northern GOM was dominated by older fish (63% > age 
5). Blackfin Tuna are not directly targeted in commercial 
fisheries in the northern GOM, and the similarity between 
Z and M estimates described here indicate that F is likely 
minimal. Given that there is no size limit for Blackfin 
Tuna in the northern GOM recreational fishery, the abun-
dance of older age-classes in the catch could simply be re-
flective of a healthy and sustainable population (Berkeley 
et al. 2004; Venturelli et al. 2009). Age truncation (absence 
of older individuals) is relatively common in exploited 
tunas (Secor et al. 2014), and the age structure of Blackfin 
Tuna catch in more directed fisheries in the southwest-
ern Atlantic and Caribbean is dominated by younger fish 
(age 1–5; Vieira et al. 2005). The relatively low number of 
individuals in younger age-classes in the GOM suggests 
that, despite the lack of a size limit, there is also an angler 
preference or gear bias towards older (larger) individuals 
contributing to the observed age structure. This is likely 
explained by the fact that Blackfin Tuna often school with 
other tunas (Vieira et  al.  2005; Bezerra et  al.  2013) and 
are captured in recreational fisheries that primarily tar-
get Yellowfin Tuna in the northern GOM (size limit for 
Yellowfin Tuna = 686 mm).
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Tunas are critical components of open ocean ecosys-
tems and are among the most valuable and targeted taxa 
in global fisheries. This is the first study to examine the 
age, growth, and mortality for Blackfin Tuna in the GOM 
and provides needed baseline estimates of size at age, lon-
gevity, and natural mortality that can be used to inform 
future assessments. While Blackfin Tuna currently re-
ceive considerably less attention than larger tunas in the 
Atlantic, recent population declines in many large tunas 
could lead to increasing focus on smaller, more abundant 
tunas (Juan-Jordá et al. 2011). Given that Blackfin Tuna 
are the most abundant tuna in the GOM and Caribbean, 
such a scenario is certainly plausible. The results provide 
critical baseline life history information on a data-poor 
species at relatively low levels of exploitation that can be 
used as reference points for future studies. Still, compara-
ble data from other regions are lacking, and future stud-
ies focused on reproduction, habitat use, and migratory 
patterns are needed to better identify critical habitats and 
improve our understanding of Blackfin Tuna population 
dynamics (e.g., stock boundaries, mixing).
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