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a  b  s  t  r  a  c  t

Accurate  maturity  schedules  are  essential  for informed  management  of  many  fishery  resources.  Although
histological  methods  are  generally  acknowledged  as the  best  approach  to correctly  assign  maturity  status
of  individual  fish,  the  methods  can  be expensive  and  time  consuming.  We  developed  and  tested  a  set  of
multivariable  models  to  predict  maturity  of  southern  flounder,  a  valuable  flatfish  occupying  estuarine
and  coastal  systems  in the  southeastern  US.  We  also  evaluated  the  potential  for  whole  mount  methods  to
validate maturity  assignments  and  help  discriminate  transitional  oocyte  stages.  Lastly,  we used  one  of  the
better  performing  models  to conduct  retrospective  analysis  of  variability  in southern  flounder  maturity
schedules.  Several  models  performed  well  in predicting  southern  flounder  maturity;  nearly  half  of the
models  we  tested  achieved  ≥85%  prediction  success.  We  noted  that  the  gonadosomatic  index  (GSI)  was
included  in  most  of  the  higher  performing  models  and, by  itself,  was  a  strong  predictor  of  maturity  for
southern  flounder.  The  addition  of  novel  quantitative  predictors,  such  as gonad  color  and  dimensions,
pushed  model  success  above  90%  in  many  cases.  Whole  mount  methods  showed  a high  level  of  agree-
ment  with  histological  methods,  and  should  be  investigated  as  an  inexpensive  alternative  for  validating
maturity  assignments.  Retrospective  analysis  revealed  the  potential  for interannual  fluctuations  in L50 of
2–5 cm  for  southern  flounder,  which  can impact  yearly  estimates  of SSB  and  target  harvest  rates.  Multi-
variable  predictive  models  using  routinely  collected  fishery  biological  data  can  provide  reliable  estimates
of fish  maturity  and,  when  coupled  with  whole  mount  methods,  should  represent  an  improvement  of
traditional  macroscopic  maturity  assignment.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Understanding temporal variability in the timing of maturity
is essential for successful management of exploited fish stocks,
yet maturity schedules are often incomplete or prone to error
(Lowerre-Barbieri et al., 2011a). For many fishes, maturity assign-
ments have traditionally been based on visual inspection of
gross (macroscopic) features of whole gonads (West, 1990). How-
ever, macroscopic staging can be inaccurate since it is generally
restricted to coarse and often subjective measures of gonad size,
shape, or color that do not necessarily correspond with oocyte-
level development (e.g., Vitale et al., 2006; Costa, 2009; Ferreri et al.,
2009; McPherson et al., 2011; Midway and Scharf, 2012). Despite its
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limitations, macroscopic staging remains a common approach for
assigning maturity status since it is inexpensive and relatively easy
to complete. Alternatively, histological examination of gonadal tis-
sue is widely considered to be the benchmark in fish reproductive
biology as it provides oocyte-level information and a high degree of
accuracy in distinguishing between immature and mature individ-
uals (Hunter and Macewicz, 1985; Murua and Saborido-Rey, 2003).
The major drawback to histology is that it is resource intensive,
requiring considerable time and expense, and specialized training.

In some cases, accurate maturity assignments have been
obtained using simple and inexpensive methods instead of histol-
ogy (West, 1990; Neidig et al., 2000). Specifically, two alternative
approaches that have promise include multivariable predictive
modeling and whole mount procedures. Statistical models to pre-
dict maturity status for individual fish can take a number of forms,
but recent models have generally taken advantage of routinely col-
lected biological (e.g., length, weight, age, etc.) and environmental
(e.g., location and date of capture, physical habitat attributes, etc.)
variables to increase predictive success beyond simple macroscopic
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staging criteria. For example, Vitale et al. (2006) used a regression
tree model to determine that gonadosomatic (GSI) and hepato-
somatic (HSI) indices could correctly predict maturity of Kattegat
Atlantic cod (Gadus morhua) for 95% of the individuals tested. Sim-
ilarly, Schill et al. (2010) used environmental variables to generate
maturity models with prediction success rates between 77 and 89%
for Idaho redband trout (Oncorhynchus mykiss gairdneri). The ability
to predict maturity status with high rates of success by supplemen-
ting macroscopic staging with information gained from multiple
routinely collected variables could lessen the need for regular his-
tological analysis.

Whole mounting of oocytes (also referred to as wet or squash
mounts) is a simplified method to identify oocyte stages that
requires only placing a sample of fresh or preserved ovarian tissue
on a glass slide, compressing the sample with a cover slip, and then
viewing using a stereo or compound microscope. Whole mount
methods have been applied more commonly as part of fecundity
studies (e.g., Thorsen and Kjesbu, 2001; Witthames et al., 2009)
than for the development of maturity schedules; however, staging
of oocytes from whole mounts has been successfully validated in
cases where it was attempted (Kjesbu, 1991; Neidig et al., 2000).
More specifically, both Forberg (1983) and West (1990) reported
high agreement between whole mount and histological methods to
stage oocytes of capelin (Mallotus villosus villosus) and brownstripe
red snapper (Lutjanus vittus), respectively. West (1990) further sug-
gested that, if validated, whole mounts can be more efficient than
histology for generating maturity schedules. Similar to simple GSI
calculations, whole mounting is rapid and inexpensive; however
it can yield microscopically detailed information for some species,
indicating its promise as a potential alternative to more extensive
histological approaches.

The ability to produce rapid and accurate maturity schedules
on a continual basis should increase our understanding of spa-
tial and temporal variation in maturity and lead to more effective
management (Morgan, 2008). Fish maturity schedules can vary for
numerous reasons, including density-dependent responses to fluc-
tuations in population abundance (Morgan and Colbourne, 1999;
Hutchings and Baum, 2005), environmental variation (e.g., tem-
perature; Dhillon and Fox, 2004; Tobin and Wright, 2011), and
selective mortality (Law and Grey, 1989). Because changes in matu-
rity are thought to be influenced more by changes in abundance
and demographics (i.e., selective removal of individuals through
fishing) and less by natural variation (Walsh and Morgan, 1999),
exploited species are more likely to display temporal variability in
maturation schedules. The ability to monitor temporal shifts in age-
and size-specific maturity has the potential to serve as a warning
of overfishing (Morgan, 2008), thus quantifying and understand-
ing causes of variation in reproductive timing should be a research
priority.

In this study, we attempt to improve upon existing macro-
scopic maturity staging for female southern flounder (Paralicthys
lethostigma), an economically valuable flatfish in coastal waters of
the U.S. South Atlantic and Gulf of Mexico. The latest assessment
of the population harvested in North Carolina waters concluded
that the stock was overfished (spawning stock biomass [SSB]
below the threshold level; Takade-Heumaker and Batsavage,
2009). Recent findings (Midway and Scharf, 2012) also indicate
that the macroscopic maturity classification system used in the
assessment likely leads to overestimation of SSB and overly opti-
mistic biological reference points. Overfished status combined with
lower SSB than previously thought highlights the need for accurate
maturity information so that future assessments and management
decisions for southern flounder can be conducted with confidence.

Misclassification of southern flounder maturity likely stems
from two sources, which together were suspected to be the cause
of low agreement between macroscopic and histological maturity

Table 1
Stages used to assess maturity in North Carolina southern flounder. Each stage
and  the description of its macroscopic features follow guides used by the
North Carolina Division of Marine Fisheries. The most advanced oocyte stages
are based upon histological examination of female gonadal sections and follow
Brown-Peterson et al. (2011). CA = cortical alveolar; OM = oocyte maturation;
PG  = primary growth; POF = postovulatory follicle complex; Vtg1 = primary vitello-
genesis; Vtg2 = secondary vitellogenesis; Vtg3 = tertiary vitellogenesis.

Macroscopic stage Macroscopic features Histologically most
advanced stage oocyte

Immature Ovaries small and thin—no
oocytes visible

PG

Developing Ovaries rotund,
yellowish-orange and turgid

CA, Vtg1, Vtg2

Fully developed Same as developing, but with
oocytes visible

Vtg3

Ripe (running) Ovaries large and soft with
many large, free-flowing (with
slight pressure) hydrated
oocytes

Vtg3, OM,  POF

Spent Ovaries small and bloodshot;
few hydrated oocytes, if any

POF, few Vtg

Resting Ovaries small, flaccid,
translucent with no visible
oocytes

PG

assignments for southern flounder in early stages of reproductive
development (Midway and Scharf, 2012). The first source of mis-
classification is the application of mostly descriptive macroscopic
staging criteria that have not been thoroughly validated. Sec-
ond, southern flounder have historically been inaccessible during
spawning, which is presumed to take place in deep offshore waters,
meaning that most fish are collected during the months imme-
diately preceding spawning and thus, only possess early oocyte
developmental stages. Given the resources necessary to complete
histological analyses, it is unlikely that they will become routine for
southern flounder or other similar species managed by state and
federal agencies. However, as shown for other teleosts, routinely
collected biological variables (e.g., gonadosomatic indices, body
mass, condition indices, age, date of capture) can enhance matu-
rity predictions and are less time and cost intensive. Thus, there
is strong potential to improve maturity predictions for southern
flounder and thereby enhance future stock assessments and man-
agement decisions. To address this possibility, our objectives were:
(1) to combine existing and novel macroscopic characters with
additional biological variables to develop and evaluate multivari-
able models for maturity prediction; (2) to assess the potential for
using whole mount methods to generate maturity schedules; and
(3) to demonstrate the utility of multivariable predictive models
by quantifying historic variability in size-based maturity of North
Carolina southern flounder.

2. Materials and methods

2.1. Fish collection and measured variables

Southern flounder were collected during the fall (Oct–Dec)
of 2009 and 2010. A complete description of collection meth-
ods and data retrieval is contained in Midway and Scharf (2012).
Briefly, fish were collected from both fishery-dependent and -
independent sources, kept on ice, and returned to the laboratory
for processing. Variables measured for all fish included total
length (TL) in mm,  weight (g), age (y), gonadosomatic index
(GSI = [gonad weight/(body weight − gonad weight)] × 100), ordi-
nal date of capture, and assigned macroscopic maturity stage
(stages are those used by the North Carolina Division of Marine
Fisheries [NCDMF] and are described in Table 1). Fish were ran-
domly selected for histological analysis within each year (2009
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Fig. 1. Initial measurements used in ovary morphology descriptors:
girth = mid/length; top thickness = mid/top; elongation = length/top.

n = 199; 2010 n = 225) after stratifying the data by collection month
and region. For both years, fish TL was approximately normal with
the mean ± SD = 388.4 ± 52.5 mm and 385.5 ± 51.4 mm during 2009
and 2010, respectively. Southern flounder display strong sexual
dimorphism in size, and the fishery targets larger females. Con-
sequently, nearly all fish we collected were females, which were
the focus of our analyses.

In addition to the variables measured for all fish, six additional
variables were measured for a subset of individuals. These included
two measures of gonad coloration (i.e., mean color density, mean
red density), three measures of ovary dimension (i.e., ovary girth,
top thickness and elongation) and the longitude of the capture
location. We hypothesized that quantifying color variation among
ovaries would be a useful predictor of maturity since most macro-
scopic staging guides include descriptions of color, including guides
for southern flounder (Wenner et al., 1990). Additionally, Peer et al.
(2012) recently used measurements of gonad color to successfully
discriminate several oocyte stages of striped bass (Morone sax-
atilis). During macroscopic staging, we used a Fujifilm FinePix 8.2
megapixel digital camera to take digital images of whole ovaries
for a subset (n = 195) of fish. The camera was fixed to a rigid frame
and positioned approximately 305 mm above the gonad, and no
flash was used. Images were uniformly white balanced using Image
Pro software (Media Cybernetics, Bethesda, MD,  USA) to standard-
ize residual variation, although photographic location, focal length,
and camera settings were consistent for all images, which should
have minimized any color-balancing issues. Next, we  identified a
representative region of the ovary (approximately 10% of the area)
which was selected to exclude connective tissue, blemishes, or
other imperfections that were not representative of the ovary color.
This sample was then used for estimation of mean color density and
mean red density, both of which are objective, digital measures
of saturation. Due to observations of changing ovary morphol-
ogy during maturation—e.g., lobe thickening and elongation—we
also hypothesized that ratios of ovary size (length/width) might
provide a quantitative measure that would enhance maturity pre-
diction. During ovary processing, one lobe was randomly selected to
obtain measurements of length, width at the top (top width), and
width in the middle (mid width; defined as the notch where the
stout upper part of the gonad meets the tapered lobe) (see Fig. 1).
From these measurements, three ratios were created, including
girth (mid width/length), top thickness (mid width/top width) and
elongation (length/top width), and included as maturity predictors
for a subset (n = 230) of fish. Lastly, longitude was  hypothesized to
be a possible predictor of maturity since some of North Carolina’s
larger bays (e.g., Albemarle and Pamlico Sounds) extend across
large east–west distances (>1◦ of longitude) from riverine nursery
habitats to ocean inlets. Fish captured at eastern longitudes were
closer to ocean inlets, indicating a potential readiness to initiate an
offshore spawning migration. Thus, we speculated that these indi-
viduals might possess more advanced oocytes, and we examined

longitude as a maturity predictor for 73 individuals collected from
these Sounds.

2.2. Model construction and selection

We used logistic regression models to examine a total of eight
macroscopic variables for their performance in predicting matu-
rity of southern flounder. All of the fish used in this analysis had
been examined histologically and categorized as sexually mature
or immature based on the most advanced oocyte stages identi-
fied. Based on oocyte stages described in Grier et al. (2009), we
used the presence of cortical alveolar oocytes (or more advanced
oocyte stages) to define a mature fish, assuming that fish which
had initiated oocyte development would complete the process and
spawn in the upcoming spawning season (Murua and Saborido-Rey,
2003; Brown-Peterson et al., 2011; Lowerre-Barbieri et al., 2011b).
These histological maturity assignments were assumed to reflect
the ‘true’ maturity status, and the performance of predictive models
in determining maturity was  judged relative to histological assign-
ments. Our first set of models tested six primary variables (assigned
macroscopic stage, GSI, TL, weight, date of capture, and age) as well
as the interactions [GSI × date of capture] and [TL × date of cap-
ture] to determine which combination of those variables produced
the most accurate maturity assignment. The choice of these two
specific interactions was  based on the likely time required to com-
plete both oocyte development and offshore migration, and thus
the hypothesis that a female individual would need to initiate
oocyte development by a certain time of year in order to partic-
ipate in the upcoming spawning season. Therefore, we surmised
that achieving some threshold of somatic growth (TL) or gonadal
development (GSI) by a specific time of year might represent a
good predictor of maturity. We created a set of 255 models that
included all possible combinations of the predictor variables. Multi-
variable logistic regression models with binomial error distribution
and logit link function were then fitted using the glm function in R
version 2.15 (R Development Core Team, 2012).

Model performance was  first assessed using Akaike’s informa-
tion criterion (AIC). Model selection based on AIC is commonly
applied in ecological studies in order to compromise between
goodness-of-fit and model complexity (Burnham and Anderson,
2002; Symonds and Moussalli, 2011). Model complexity refers to
the number of parameters, with an increased number of parameters
often resulting in the model closely fitting the training data; how-
ever, this complexity may  or may  not be useful for predicting new
observations. We  used AICc—which converges on AIC with increas-
ing sample size—due to low sample size relative to the number of
model parameters (Burnham and Anderson, 2002). In our analysis,
all models with !AICc ≤ 2 (where !AICc is measure of each model
AIC relative to the best model AIC) were considered plausible and
well supported by the data. We also considered models with !AICc
values as high as 6 and used model probability weights (wi; defined
as the relative weight of evidence supporting a model relative to
all other models within the set) to identify a subset of best models
(Burnham et al., 2011).

A second framework for evaluating model performance
included the use of cross validation approaches, in which a sub-
set of the data are left out of the model and used instead for model
testing (Shao, 1993). The strength of cross validation is that it allows
for extra-sample inference (i.e., inference or prediction of unknown
data—an obvious primary goal of any maturity assignment model),
while AICc rankings are based solely on the specific data used to
build the models. We  first conducted a 2-fold cross validation, in
which models were built (i.e., trained) using data from a single
year (2009 or 2010) and then tested on the other year. We  also
conducted jackknife reclassification (i.e., leave-one-out cross vali-
dation), in which models were built excluding one observation and
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the maturity status of that observation was then predicted by the
model. For each fish in the data set, the absolute value of the dif-
ference between the predicted probability of maturity and actual
maturity (either 0 or 1) was calculated. The model was  deemed
successful for a fish if this difference was <0.5. For example, if a
fish were determined to be mature based on histology, a model
prediction of 80% maturity probability would be deemed a
model success, whereas a model prediction of 40% maturity proba-
bility would be deemed a model failure. The overall performance of
cross validation for each model was expressed as the proportion
of model successes, and was compared among candidate models.

Both AIC and cross validation have strengths for model evalu-
ation. AIC scores are based on the likelihood of the model given
a specific dataset, and will tend to be highest for models that
minimize residual error, whereas cross validation success is based
purely on correct classification of independent data, which is often
a goal in fisheries science. Because our modeling goal was  to max-
imize predictive power while minimizing variables, the use of
the two model selection methods provided sets of optimal mod-
els based on each selection criteria that could be contrasted. In
addition, by understanding the performance of each method with
respect to their differences, we would be able to assess a particu-
lar model’s utility based on the available data. We  were concerned
that cross validation success might be high due to the cutoff of 50%,
whereas the likelihood-based AIC approach would provide a bet-
ter probabilistic fit. In order to address this concern, we  examined
the distribution of prediction deviations for best models identi-
fied by each selection process. These deviations were defined as
the absolute value of the difference between the model-predicted
probability of maturity and the histologically determined maturity
for a given fish. Since AICc rankings will be higher for models with
lower residual error given a fixed number of parameters, we  were
interested in exploring how models with relatively poor AICc rank-
ings, but high cross validation success, compared to the best AICc
models.

Finally, in order to more closely examine the deviation patterns
for some of the most successful models, we determined whether
prediction failures consisted of many of the same individuals that
may  have possessed specific sets of traits. We  also examined the
distribution of failure types to determine if any bias existed, such
as most failures resulting from immature model predictions for
mature fish, or vice versa. Lastly, we quantified the similarity of
specific failures between models. To do this, we calculated multiple
pairwise comparisons among the specific individuals comprising
the failures from a select group of models and used Sørensen’s sim-
ilarity coefficient (Sørensen, 1948) to characterize specific failures
that occurred in both models. Sørensen’s similarity coefficient is an
overlap index used to measure the similarity of two  samples. Values
range from 0 and 1, where 0 indicates no overlap and 1 indicates
complete overlap.

2.3. Hindcasting variation in maturity schedules

To illustrate the utility of the predictive models for quanti-
fying temporal variation in the timing of maturity, we applied
a well-performing (i.e., high jackknife reclassification success)
model to an 18-year data set (1991–2008) provided by the NCDMF
to estimate historic interannual variability in southern flounder
maturity schedules. The data set consisted of fish collected as
part of fishery-dependent and -independent sampling programs,
collectively known as Program 930 (see Takade-Heumaker and
Batsavage, 2009 for additional programmatic details). From the
data set, we selected fish for analysis that were captured during
the same months (Oct–Dec) as those used to build our models.
Based on our model selection results, we identified a single model
for use in hindcasting that included TL, weight, and the [GSI × date

of capture] interaction as variables. This model demonstrated the
highest jackknife reclassification success among models that did
not include any novel predictors and was  also simple enough that
each of the variables was  measured for a sufficient number of
fish during most of the years in the NCDMF data set. Use of the
most supported AICc models, which included 7+ variables, would
have resulted in a large number of years in the historical data set
with insufficient data. The simpler three-variable logistic model
was fitted to generate maturity ogives for all years with sufficient
data. Estimates of L50 (the length at which 50% of individuals were
mature) were calculated by solving the equation for the logistic
model for particular values of the predictors:

p = 1
1 + exp(!X)

where p = probability of maturity, X is a k × 1 vector of predictors
(including length) and ! is a 1 × k vector of coefficients. Years with
sufficient data were restricted to those containing fish with enough
contrast in TL to model a full maturity ogive (having both a lower
and upper asymptote); years generating only partial ogives were
omitted from the analysis. Retained years (n = 9) nearly always had
sample sizes >100 fish (mean n = 134), whereas omitted years (n = 9)
had considerably fewer samples (mean n = 22). We  also hindcasted
southern flounder maturity ogives using a model with only a single
predictor—the traditional macroscopic stages that were reported
in the data set for the same subset of years. This model would
be representative of maturity schedule estimation based only on
macroscopic stage assignment.

2.4. Examination of ovary whole mounts

Preserved ovarian tissue that remained after removing sections
for histological analysis was  used to examine the potential use of
whole mounts to assign maturity of southern flounder. Following
Neidig et al. (2000), we used a scalpel (size 11) to scrape a small
amount of oocytes from an incision in one of the gonad lobes.
Typically, samples had been in fixative for >2 years, so the agita-
tion method outlined by Lowerre-Barbieri and Barbieri (1993) had
limited success. In addition, this past method was developed to
separate large quantities of oocytes for fecundity estimation while
whole mounting generally only requires a small sample. Once the
sample was obtained, it was  placed on a 75 mm × 25 mm glass
microscope slide, a drop of water was  added, a cover slip was
placed on the sample, and then viewed on a compound micro-
scope (Leica DME) typically between 100 and 200× magnification.
To identify repeatable features specific to oocyte stages, we initially
examined a training set of 10 whole mount samples (representing
various oocyte stages) while directly comparing them with histo-
logical preparations for the same fish. We  then staged 105 whole
mount samples blindly using the oocyte descriptions developed
from examination of the training set.

3. Results

3.1. Macroscopic model performance

Among the 255 logistic models that we  tested, only three mod-
els achieved a !AICc ≤ 2 (including one model with a !AICc just
slightly >2) (Table 2). Together, these three models received a high
level of support, with a combined relative probability weight (wi)
of 0.52 (Table 2). All three models included six or more predictor
variables, indicating that for maturity prediction, more complex
models received greater AICc support than simple models.

When cross validation results were compared to AICc rank-
ings, there was  a relatively strong correlation between model
predictive performance and AICc support (Spearman’s " = −0.677;
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Table  2
The ten most supported models according to AICc ranking and their associated cross validation performance. Model numbers indicate the predictors included in each model:
1  = macroscopic stage; 2 = GSI; 3 = TL (mm);  4 = weight (g); 5 = ordinal date of capture; 6 = age; 7 = [TL × ordinal date of capture]; 8 = [GSI × ordinal date of capture]. K = the total
number  of terms included in the model, which equals the number of predictors plus the intercept. !AICc is the difference between each model and the best performing
model  (with models in bold text for !AICc approximately ≤ 2), and wi is the model probability weight. Subscripts on the 2-way columns indicate which year’s data was  used
to  build the model (i.e., performance was assessed on the opposite year), and the Jackknife column represents the reclassification success of the full data set when evaluated
with  leave-one-out cross validation.

Model K AICc !AICc wi 2-way2009 2-way2010 Jackknife

1234578 8 310.66 0.00 0.29 84.00% 81.91% 84.20%
234578 7 312.43 1.77 0.12 85.33% 82.91% 85.61%
12345678 9 312.69 2.03 0.11 84.44% 80.90% 83.96%
123457 7 313.04 2.38 0.09 83.56% 80.90% 84.43%
2345678 8 314.47 3.81 0.04 84.89% 81.41% 85.38%
23457 6 314.68 4.02 0.04 84.00% 80.90% 87.03%
1234567 8 315.11 4.45 0.03 83.11% 80.90% 84.20%
134578 7 315.13 4.47 0.03 84.00% 79.90% 85.38%
123478 7 315.90 5.24 0.02 84.44% 84.42% 84.43%
1234  5 316.55 5.89 0.02 83.56% 82.91% 85.14%

Fig. 2). However, this correlation weakened to −0.245 when consid-
ering only the better models—those with AIC scores <350 and
jackknife reclassification success rates >83% (which comprised
about three-fourths of all models). During jackknife reclassifica-
tion, many of the models that we tested achieved equally high
predictive success (Fig. 3). Specifically, 208 models (or 82% of all
models tested) successfully predicted maturity for >80% of the fish,
and 117 models (46% of all models tested) successfully predicted
maturity for >85% of the fish. Additionally, when models were
grouped by complexity (i.e., the number of predictor variables),
at least one model within each group had a jackknife reclassi-
fication success rate as high as 84%, including success rates of
85% and 86% for the least complex models that included only one
or two predictor variables, respectively (Table 3). For the 2-fold
cross validation results, average success rates were very similar
for both years: mean ± SD = 81.4 ± 0.05% and 81.6 ± 0.04% for mod-
els trained on 2009 and 2010 data, respectively. Interestingly, the
model receiving the most AICc support (model 1234578) and
the model with the best jackknife reclassification performance
(model 348 was the simplest model to achieve 87% prediction
success) differed markedly in the number of predictor variables
they included (Table 4), although model 1234578 was also well-
supported in cross-validation (84%).

When we explored patterns in the deviation of model predic-
tions from histological maturity assignments, the models with
relatively poor AICc rankings but high cross validation success
had a similar distribution of deviations as did the most supported
AICc models (Fig. 4). There was only a slight increase in median

Fig. 2. Scatterplot of all model AICc values and Jackknife reclassification success
rates. Model ranking methods were well correlated (Spearman’s " = −0.677); how-
ever, the correlation was  less strong when considering only the best models for each
criteria (the points contained in the gray box; Spearman’s " = −0.245).

Fig. 3. Leave-one-out cross validation results for models constructed using data
from both years combined (n = 255 models). At least one model representing each
level of model complexity (i.e., inclusion of a specified number of predictor variables)
performed well (≥84% classification success).

deviation, from 0.11 for the most supported AICc models to
0.15 for the models with relatively poor AICc rankings but high
cross validation success. Model failures occurred consistently for
individuals with intermediate GSI values (mean GSI ± SD = 0.51,
0.52, 0.52, and 0.53 ± 0.28 for misspecified individuals by the four
models included in Fig. 4), an indication that GSI contrast was
a strong predictor of maturity. Indeed, the GSI-only model did
achieve high cross validation success. Additionally, the failures
by the models presented in Fig. 4 were mostly in the same direc-
tion; the models incorrectly predicted mature fish to be immature

Table 3
Jackknife reclassification rankings for the best performing model at each level of
model complexity, where complexity is defined at the number of predictor terms.
Each model below achieved the highest cross validation success among all mod-
els that included a specified number (1–8) of predictor variables. Column headings
follow those in Table 2.

Model K AICc !AICc wi 2-way2009 2-way2010 Jackknife

2 2 333.5 22.9 0.00 83.11% 87.44% 84.67%
23  3 329.9 19.2 0.00 84.00% 87.44% 86.08%

348  4 319.3 8.6 0.00 84.89% 88.44% 87.03%
3468 5 321.3 10.7 0.00 84.89% 85.93% 86.79%

23457 6 314.7 4.0 0.04 84.00% 80.90% 87.03%
234567 7 316.7 6.1 0.01 84.00% 81.41% 86.56%

1345678 8 317.2 6.5 0.01 83.56% 79.90% 85.14%
12345678 9 312.7 2.0 0.11 84.44% 80.90% 83.96%
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Fig. 4. Histograms of individual deviations (absolute value of the difference between model probability of maturity and histologically determined maturity) for four models.
The  top two panels include results for the most supported (model 1234578) and second most supported (model 234578) models based on AICc rankings. The bottom two
panels  include results for models receiving poor AICc support, but achieving high cross validation success (model 23 on left and model 2 on right).

Table 4
Logistic regression coefficients, standard errors (SE), and P-values for each term
in  the model with the best jackknife reclassification (model 348) and the model
receiving the most AICc support (model 1234578).

Model Variable Coefficient SE P

348 Intercept 3.0063 3.1987 0.347
TL  (mm)  −0.0325 0.0117 0.005
Weight (g) 0.0074 0.0019 <0.001
GSI × ordinal date 0.0223 0.0032 <0.001

1234578 Intercept 49.5612 17.4277 0.004
Macroscopic stage 0.6358 0.3200 0.047
GSI 35.8093 13.3284 0.007
TL  (mm)  −0.1914 0.0501 <0.001
Weight (g) 0.0059 0.0019 0.002
Ordinal date −0.1547 0.0561 0.006
TL  (mm)  × ordinal date 0.0005 0.0002 <0.001
GSI × ordinal date −0.0914 0.0403 0.023

in 65–75% of the cases of failed prediction, depending on the
model. Pairwise comparisons of failed predictions for the four
models yielded Sørensen’s coefficients between 0.75 and 0.89,
indicating a high degree of similarity (i.e., non-random) in the
individual fish that each model failed to predict correctly (Table 5).

Table 5
Sørensen’s similarity coefficients based on pairwise comparisons of failed pre-
dictions by the four models presented in Fig. 4. Coefficients are expressed as a
percentage and represent the proportion of failures common to both models (i.e.,
failed maturity predictions for the same individuals in each model).

Model 1234578 234578 23

1234578 – – –
234578 88.7% – –
23  75.8% 80.0% –
2  78.5% 77.4% 87.1%

For a subset of fish, we  also investigated the performance of
novel predictors—gonad size, gonad color, and capture location.
For the top ten AICc-ranked models, all novel predictors with the
exception of longitude improved mean classification success by at
least 5%. When added to each of the best jackknife reclassifica-
tion models for a given number of predictor variables, the novel
predictors resulted in more modest improvement (about 3%) in
classification success, again with the exception of longitude. Sim-
ilar novel predictors produced comparable model improvements;
e.g., both measures of gonad color performed similarly, as did the
three measures of gonad morphology. Overall, the addition of one
or more novel predictors resulted in several good models (regard-
less of the ranking criteria), which were able to predict maturity
correctly >90% of the time.

3.2. Hindcasting variation in maturity schedules

The simplest model that achieved the best jackknife
reclassification success was selected for use in hindcasting
southern flounder maturity schedules. Two models achieved
>87% classification success (see Table 3 for reclassification
performance not including novel predictors) and model 348
(maturity = ˇ0 + ˇ1 × TL + ˇ2 × weight + ˇ3 × [GSI × ordinal date])
was selected because of the reduced number of predictor terms. It
should be noted that model 348 and model 23457 (the two models
with >87% classification success) contained nearly identical infor-
mation. Model 23457 included each of the predictors included
in model 348, with the only difference between the models
being that model 348 included the interaction between GSI and
ordinal date of capture, while model 23457 included each of those
predictors separately. Therefore, we expected these two models
to generate similar retrospective estimates of southern flounder
maturity ogives, and focused our analysis on the simpler model. In
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Fig. 5. Estimated maturity ogives for nine years (1997, 1998, 2000, 2001, and 2004–2008) using probabilistic model hindcasting (Model 348; solid black line) and a conven-
tional  macroscopic-only model (Model 1; dashed red line). Model 348 included TL, weight, and the GSI × ordinal date interaction, and in each panel the L50 estimate for Model
348  is presented in black text above the L50 estimate for Model 1. Note: Macroscopic data from 2000 and 2001 were insufficient in contrast to produce maturity ogives, and
are  not reported.

addition, the simpler model slightly outperformed the more com-
plex model during 2-fold (annual) cross validation (see Table 3).
Sufficient data to calculate a maturity ogive were available from
nine years: 1997, 1998, 2000, 2001, and 2004–2008, producing a
mean L50 = 409 mm TL with a range of 47 mm (L50 = 383–430 mm
TL; Fig. 5). In cases when L50 estimates were calculated for con-
secutive years, the mean difference between any two  adjacent
years was 14 mm (range = 6–32 mm).  When maturity ogives were
reconstructed using only traditional macroscopic stages (i.e., using
model 1, where 1 = assigned macroscopic stage), the range of L50
estimates was twice as large (97 mm)  and all were predicted to be
≤380 mm TL, outside of the entire range of L50 estimates generated
by our best jackknife reclassification model.

3.3. Whole mount potential

Based on recorded observations made when viewing a training
set of ten whole mount samples paired with histological stages, we
generated whole mount descriptions for the three oocyte stages
that we encountered (Table 6; Fig. 6). For 105 independently
assessed ovarian tissue samples, agreement between histological
assignments and whole mounts was high. Based on standard histo-
logical preparation and analysis, the sample included 55 individuals
possessing only primary growth oocytes, 32 fish with cortical alveo-
lar oocytes, and 18 with vitellogenic oocytes. Comparatively, whole
mount staging identified 51 fish with primary growth oocytes,
37 with cortical alveolar oocytes, and 17 possessing vitellogenic
oocytes. Although stage-specific agreement was  high, correspon-
dence between the methods improved further when fish were

simply classified as mature or immature, which is the primary level
of classification required to construct maturity schedules. Using
whole mounts, we  were able to correctly stage 93% of immature and
100% of mature southern flounder. Although some cortical alveo-
lar and vitellogenic oocytes were confused, the presence of either
stage was still considered to indicate a mature fish. Only four indi-
viduals were incorrectly assigned mature or immature status by the
whole mount approach and each instance involved a fish possess-
ing only primary growth oocytes (immature) based on histology
which was  incorrectly staged as having cortical alveolar oocytes
(mature) using whole mounts.

Table 6
Descriptions of primary growth, cortical alveolar, and vitellogenic oocyte stages
when viewed using whole mount methods.

Stage Description

Primary growth Oocytes clear; nucleus visible; few/none clear Balbiani
bodies randomly distributed; oocytes packed densely
and very cohesive

Cortical alveolar Increase in size over primary growth; small cortical
alveoli arranged as dark clusters around nucleus; zona
radiata in more developed samples, but not
recommended for positive identification

Vitellogenic Oil droplets larger than cortical alveoli and packed
throughout oocyte (to edge); well-defined zona
radiata; considerably larger than other stages;
generally dense and dark appearance; to the naked eye
or with a dissecting microscope oocytes appear yellow
and singular (not cohesive as in earlier stages)
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Fig. 6. Examples of whole mount (a) and histological (b) images taken from three southern flounder. Shared numbers indicate the same individual fish. 1a and 1b are each
examples of primary growth stage oocytes; 2a and 2b are each examples of cortical alveolus stage oocytes (based on Grier et al., 2009); 3a and 3b are each examples of
vitellogenic stage oocytes.

4. Discussion

4.1. Predicting maturity

To our knowledge, adult southern flounder have never been
collected from their offshore spawning locations. Assessing the
maturity of females is thus restricted to pre-spawning individuals,
many of which only possess oocytes in early stages of develop-
ment. Consequently, recent findings have highlighted potential
errors in the estimation of maturity schedules for this species using
only macroscopic staging criteria (Midway and Scharf, 2012). In
this study we have demonstrated that through predictive mod-
eling considerable improvements in the accuracy of maturity
assignments can be achieved. We  developed and tested a set of
multivariable models capable of predicting maturity for southern
flounder females with up to 90% success with minimal additional
data collection requirements. A major benefit of the modeling
approach we used is that it can be done at very low cost since most
of the input data was already available and the models were con-
structed and cross-validated using free software (R Development
Core Team, 2012). Although we did complete histological assess-
ment for each fish to test our models, the resources necessary to

complete histology may  only be required during model develop-
ment. After development and testing, models may  require periodic
re-calibration to adjust for changes in the relationship between
model predictors (e.g., age and size) and maturity due, for example,
to selective harvest pressure. However, fisheries-induced evolution
is unlikely to produce large changes in life history traits within rela-
tively short time periods (Hilborn and Minte-Vera, 2008; Andersen
and Brander, 2009), meaning re-calibration should be necessary
infrequently. Additional histological analyses may be required for
fishes with high error rates, such as those in very early stages of
maturity, but this should be limited to small subsets of individ-
uals in most cases. The use of predictive modeling for fish maturity
assignment has been limited historically; however, our findings,
along with other recent examples (Vitale et al., 2006; Schill et al.,
2010; Peer et al., 2012), imply that reliable estimates of maturity
can be generated using mostly data that is already being collected.
We  contend that multivariable predictive modeling of fish maturity
holds great promise as an improvement over traditional macro-
scopic assessment, and its application should be explored for other
managed species.

We  found that a large number of models achieved high clas-
sification success rates, with roughly three-fourths of the models
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tested being able to successfully predict maturity for >83% of fish
in our dataset. While most of the best models included multiple
predictor variables, GSI was included in all of the best AICc and
cross-validation models, demonstrating that sufficient contrast in
GSI within the dataset can help to generate accurate maturity pre-
dictions. Indeed, a model including only GSI as a predictor was able
to correctly assign maturity status nearly 85% of the time for south-
ern flounder. Historically, GSI has mainly been used to document
reproductive seasonality rather than to assign maturity, however
recent investigations have begun to highlight its potential to con-
tribute to maturity schedules. Tomkiewicz et al. (2003) showed that
GSI aligned well with revised oocyte stages in the Baltic stock of
Atlantic cod (G. morhua), while Vitale et al. (2006) were able to use
GSI as a main predictor variable in a regression tree model that pre-
dicted Kattegat cod maturity with high rates of success. Likewise,
McPherson et al. (2011) concluded that GSI could be used to fine
tune macroscopic maturity assignments for Atlantic herring (Clu-
pea harengus) after detecting underestimation of SSB by as much as
27% when maturity was assigned using macroscopic traits alone.
The southern flounder included in our dataset were captured prior
to offshore emigration and thus, generally did not exhibit large val-
ues of GSI. However, we found that sufficient contrast existed in GSI
between immature and mature individuals to enhance our predic-
tive ability, which is consistent with the recent findings implicating
GSI as a valuable and easily obtained predictor of fish maturity.

In our models, errors associated with GSI as a predictor occurred
mostly for mature fish having intermediate values of GSI, which
were classified incorrectly as immature. Similarity indices revealed
that model failures occurred mainly for the same individuals
(75–89% of failures in common) across different model configura-
tions. The fact that these failures occurred in several models which
included multiple predictor variables beside GSI indicates that early
developing gonadal stages will likely still require supplemental his-
tological analysis, depending on species. A closer examination of
model performance for a macroscopic-only model provided further
evidence that southern flounder early in reproductive develop-
ment will likely require additional analysis. While the model that
included only the assigned macroscopic stage as a predictor vari-
able was able to achieve a 79% success rate, this performance should
be interpreted cautiously. Specific macroscopic stages (e.g., devel-
oping) for southern flounder had very high error rates (up to 39%),
meaning that the predictive ability of any model based only on
assigned macroscopic stages will be a function of the distribution
of macroscopic stages within the modeled dataset. Models built
using datasets consisting of mostly fish in early gonadal develop-
ment stages, which tend to be the most error prone, will generally
achieve poorer success rates when the assigned macroscopic stage
is the sole predictor variable. Diminished predictive capability is
likely to be common among fishes when individuals early in the
maturation process contribute most to available data sets.

The novel predictor variables that we generated enabled our
best models to achieve >90% prediction success rates. We  found
that gonad color, a traditional trait used for macroscopic staging,
and gonad dimension could each be quantified in simple ways to
improve maturity assignments. Peer et al. (2012) recently demon-
strated success when linking ovary color to oocyte stages for striped
bass, and concluded that quantification of ovary color could likely
be used to aid maturity assignments for many species. The grow-
ing availability of low cost digital imaging capabilities has led to
increased use in fisheries (Cadrin and Friedland, 1999), and should
enable more widespread application of these techniques. For south-
ern flounder, both the ovary color analysis and the measurement
of gonad dimensions involved one additional step when processing
each fish that required minimal time and little to no cost. Additional
variables such as these could be obtained more routinely as a way
to increase accuracy of fish maturity assignments.

Despite their lack of widespread use in assessing maturity,
we found that simple whole mounting of gonadal tissue was
very successful when applied to southern flounder, with close to
95% agreement with histological assignments. Our findings were
aligned with those from previous studies that also demonstrated
high levels of agreement between whole mount techniques and
histology (Forberg, 1983; West, 1990). The main limitation we
encountered when using whole mount methods regarded the iden-
tification of transitional oocyte stages (this was also noted by West,
1990), particularly oocytes transitioning between primary growth
and cortical alveolar stages. It should be noted, however, that accu-
rate identification of early oocyte transitions such as this one can be
problematic even when examining histological preparations, and
that perhaps no method can expected to be 100% accurate. Dur-
ing the transition to secondary growth, small features can often
be detected within the oocytes, but they have yet to develop the
proteins that would be cross-linked by a formalin preservative
(Kiernan, 2000) to give whole mount oocytes the opaqueness that
is used to characterize them as developing or secondary growth.
Despite this, we found that many early cortical alveolar stage
oocytes were identifiable in whole mount preparations for south-
ern flounder, so otherwise problematic transitional stages may
be successfully analyzed for this species. Whole mount methods
could be used to complement predictive models to improve over-
all classification success to close to 100%. For instance, fish having
intermediate GSI values, which were the most frequently misclassi-
fied by the models, could be identified during the modeling process
and subject to whole mount methods. The use of whole mount
techniques, combined with predictive modeling, may represent an
efficient approach for improved maturity assessment and reduce
the need for histology.

4.2. Model selection

AIC scores and jackknife reclassification success rates were
strongly correlated across the range of models we  tested, an indica-
tion that several routinely collected biological variables can inform
predictions of maturity, especially for fish often captured in early
stages of reproductive development like southern flounder. How-
ever, the correlation between model assessment tools was weaker
when comparisons were restricted to the better models. That is,
for models with both AIC scores <350 and jackknife reclassifica-
tion success rates >83% (which comprised about three-fourths of all
models), the model rankings between AIC and jackknife reclassifi-
cation were not aligned as well. The disparities in model rankings
reflect fundamental differences between the model assessment
approaches, but also have practical implications that require con-
sideration (Burnham et al., 2011). AIC model selection ranks models
based on their relative probabilities given the existing data, elevat-
ing models that couple minimal information loss with parsimony
(Burnham and Anderson, 2002). Model validation approaches, such
as jackknife reclassification, differ fundamentally in that they rank
models solely based on their performance in correctly classifying
an independent observation (Shao, 1993). In our study, jackknife
reclassification performance benefitted from the binary classifi-
cation of maturity, and also from the fact that a model success
occurred if the predicted probability of maturity was >50% or <50%
for females identified as mature, or immature, respectively, using
histological techniques. Therefore, we were not surprised that
several simple models containing relatively few predictors could
achieve high reclassification success. However, closer inspection
of the deviations between model predictions and actual maturity
assignments (based on histology) revealed that most deviations
were small and that they were relatively similar in magnitude
between simple (few predictors) and complex (many predictors)
models. Basically, more complex models did not lessen model
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deviations appreciably and did not prevent reclassification errors,
relative to simpler models.

For the data sets we modeled, improvements in model fit that
were gained by the inclusion of many predictors exceeded the
penalties for model complexity, resulting in the lowest AIC scores
for more complex models. Although model fit was  improved, the
data requirements and associated costs for more complex models
may  not be trivial in some instances. There were models in our set
that required fewer (2–4) predictors while still receiving reason-
able support (!AICc ≤ 10), and the data required for these simpler
models may  be more attainable for a range of exploited species.
In addition, since AIC rankings are based solely on model fit to the
existing data, the most supported models are often fine tuned to
specific attributes of the data used to build the model and may  lack
generalizability. For predicting fish maturity, AIC model selection
approaches may  be most appropriate for cases when the predictors
are known to be (relatively) invariant over time, which in uncom-
mon  for most stocks (Lowerre-Barbieri et al., 2011a). Our findings
support the evaluation of multiple model assessment approaches,
which vary in their objectives, to identify a set of models that com-
bine model fit with good prediction performance when applied to
independent data.

4.3. Retrospective analysis

Temporal changes in maturity schedules are well documented
among fishes (e.g., Rijnsdorp, 1993; Morgan and Colbourne, 1999;
Walsh and Morgan, 1999; Wang et al., 2008) and have often been
attributed to density-dependent changes in growth rates result-
ing from exploitation. Additionally, variability in life history traits,
like size-at-maturity, can be caused by environmental (e.g., tem-
perature), ecological (e.g., prey availability) and genetic variation;
however, it is often difficult to distinguish the importance of mul-
tiple factors (Rose et al., 2001; Marshall and Browman, 2007). Even
with stable population abundance, shifts in demography can lead to
detectable variation in fish maturity schedules (Wright and Trippel,
2009). Regardless of the cause of variation in the timing of maturity,
its impact on the response of a stock to harvest can be consid-
erable and population assessments would benefit from a better
understanding of its magnitude.

The model that we used to hindcast southern flounder maturity
schedules did not include the assigned macroscopic stage as a pre-
dictor variable, meaning it was free from any maturity assignment
errors that may  have occurred when fish were originally exam-
ined. The mean L50 estimate for the nine years analyzed from the
historical dataset (409 mm TL) was nearly identical to the estimate
of L50 (408 mm TL) generated from a recent comprehensive histo-
logical analysis (Midway and Scharf, 2012). The close agreement
between the historical and contemporary estimates of the average
size at maturity provides some measure of confidence in the model
and its ability to quantify temporal variability in southern flounder
maturity schedules. We  detected a range in L50 estimates of 47 mm
among nine years, with adjacent years generally closer in their esti-
mates. Interannual variation in L50 by as much as 1–2 inches can
impact yearly estimates of SSB and thus, target harvest rates for
fisheries whose management includes minimum size limits, such
as the southern flounder fishery in NC. Our retrospective exami-
nation of southern flounder maturity schedules also illustrated the
bias of traditional macroscopic maturity assignment toward classi-
fying smaller fish as mature. When compared to the hindcast model
(model 348), a model using only the assigned macroscopic stage as
a predictor variable (model 1) produced much lower L50 estimates
(all years ≤380 TL) and a range that was nearly twice as broad by
comparison, an indication of the likely sensitivity of the model to
the distribution of macroscopic stages within each annual data set.

5. Conclusions

There has been increased recognition of the importance
of reproductive information for fishery population assessment
(Kjesbu, 2009; Lowerre-Barbieri et al., 2011b). New information
is challenging long-held assumptions, such as relatively constant
maturity schedules (Rochet, 2009). Integrating more and better
reproductive information into stock assessments is becoming a
goal of many management agencies, yet time and expense often
preclude the customary use of methods such as histology. Mul-
tivariable predictive models that take advantage of traditionally
collected biological information may  provide fishery managers
with a tool to generate more accurate maturity assignments with
minimal investment. Additionally, oocyte whole mounting may
prove to be a fast, inexpensive, and reliable method to validate the
maturity predictions from models and may  reduce the need for
investing in histological analyses (West, 1990; Neidig et al., 2000;
Lowerre-Barbieri et al., 2011b). Lastly, predictive models that per-
form well during cross validation can be a promising approach
to conduct retrospective analysis of variability in maturity tim-
ing, which can enable contemporary fluctuations to be interpreted
within a broad context.
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