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1  | INTRODUC TION

Issues of spatial scale are fundamental components of ecology 
(Wiens, 1989), especially in river ecosystems (Cooper, Diehl, Kratz, 
& Sarnelle, 1998). Ecological patterns are often scale‐dependent—
key drivers may differ depending on the scale of interest (Soranno 
et al., 2014), and unique properties may emerge across spatial 

scales (Heffernan et al., 2014). Identifying drivers of cross‐scale 
patterns provides mechanism to cross‐scale inference (Jackson 
& Fahrig, 2015; McGarigal, Wan, Zeller, Timm, & Cushman, 2016). 
Stream fishes are ideal for studying cross‐scale patterns for two 
reasons (Hugueny, Oberdorff, & Tedesco, 2010; Olden et al., 2010). 
First, streams are linear systems that are structured hierarchically 
across spatial scales (Frissell, Liss, Warren, & Hurley, 1986; Poff, 
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Abstract
Identifying cross‐scale patterns of ecological processes is imperative, especially in 
hierarchically structured riverine ecosystems. The role of abiotic factors in determin‐
ing cross‐scale spatial structure of stream fish populations and communities is well 
studied, but less is known about how species traits drive cross‐scale patterns. We 
investigated the role of species traits for explaining autocorrelation of stream fish 
abundance at spatial scales ranging from local stream reaches to major basins. We 
calculated intraclass correlation coefficients (ICCs) representing abundance autocor‐
relation within species (N = 47)	at	each	of	five	spatial	scales.	A	hierarchical	Bayesian	
regression then modelled ICCs against spatial scale with the resulting regression co‐
efficients modelled as functions of species traits. Finally, we ordinated the scale‐by‐
species ICC matrix to calculate an overall metric describing species whose abundances 
were autocorrelated along a gradient of large to small scales, and modelled this met‐
ric	as	a	function	of	species	traits.	Abundances	of	most	species	were	autocorrelated	at	
smaller spatial scales. Maximum fecundity had a significant positive relationship with 
abundance patterns across spatial scales. Species habitat affinities and body forms 
were significantly associated with overall abundance patterns across spatial scales: 
populations of upland/lotic‐affiliated species adapted to streams with high flow cor‐
related	 at	 small	 (≤10	 km2) spatial scales. Lowland/lacustrine species with laterally 
compressed bodies showed little correlation across scales. The appropriate spatial 
scale for modelling abundance is determined not only by exogenous (e.g. environ‐
mental) factors, but also endogenous factors, like traits. Careful consideration of 
traits and life history will aid researchers in designing more effective and efficient 
surveys and analyses.
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1997).	 Second,	 the	 dendritic	 network	 of	 stream	 systems	 creates	
naturally delineated units (catchments) at discrete spatial scales, re‐
stricting fishes to within‐system dispersal (Fagan, 2002; Landeiro, 
Magnusson,	 Melo,	 Espirito‐Santo,	 &	 Bini,	 2011).	 Accordingly,	 it	 is	
well recognised that stream fishes are regulated by factors operating 
across spatial scales (Fausch, Torgersen, Baxter, & Li, 2002; Jackson, 
Peres‐Neto, & Olden, 2001; Schlosser, 1991). Many studies have 
sought to characterise spatial structure of freshwater organisms by 
examining distance decay of spatial autocorrelation in assemblage 
structure (Leprieur, Beauchard, Hugueny, Grenouillet, & Brosse, 
2008; Wilkinson & Edds, 2001) or population parameters of individ‐
ual species (Earnest, Scott, Schaefer, & Duvernell, 2014; Primmer et 
al., 2006). However, scale of autocorrelation for other patterns such 
as stream fish abundance is less studied.

Spatial structure of ecological processes in streams can be driven 
by endogenous (e.g. species traits), as well as exogenous (e.g. abiotic 
features) factors (Bonada, Dolédec, & Statzner, 2012). Numerous 
studies of aquatic organisms have focused on the role of traits on 
spatial structure of species occurrence (Kneitel, 2018; Radinger & 
Wolter, 2015), synchrony of recruitment among sites through time 
(Bret, Bergerot, Capra, Gouraud, & Lamouroux, 2015; Cattanéo, 
Hugueny, & Lamouroux, 2003; Grenouillet, Hugueny, Carrel, Olivier, 
& Pont, 2001) and community properties (de Bie et al., 2012; Cañedo‐
Argüelles	et	al.,	2015;	Grönroos	et	al.,	2013).	At	the	population	level,	
most studies have been species‐specific and thus have limited util‐
ity for generalising across taxa. Multi‐species, trait‐based studies 
are less common (Pyper, Mueter, & Peterman, 2005; Ruetz, Trexler, 
Jordan, Loftus, & Perry, 2005), and mechanistic analyses seeking to 
identify common patterns among species are even rarer (Chevalier, 
Laffaille,	&	Grenouillet,	2014).	As	a	result,	the	role	of	species	traits	on	
spatial correlation of stream fish abundance remains to be studied.

Traits can be an important endogenous contributor to spatial 
structure of fish populations and communities. For instance, more 
mobile species should have larger scales of effect because dispersal 
can swamp the effect of local processes. This relationship may co‐
vary with other traits such as body size and reproductive capability 
(Jackson & Fahrig, 2012; Miguet, Jackson, Jackson, Martin, & Fahrig, 
2016).	Additionally,	many	studies	have	found	grossly	different	scal‐
ing patterns among species for various population parameters. For 
example, scale of effect for population synchrony of small‐bodied 
Everglades	 (Florida,	 USA)	 fishes	 occurs	 at	 relatively	 small	 scales	
(~10 km), while populations of larger species in the same system 
synchronise at much larger scales (Chick, Ruetz, & Trexler, 2004; 
Trexler et al., 2002). Other studies have identified spatial correla‐
tion	 at	 tens	 (Bret	 et	 al.,	 2015;	Myers,	Mertz,	 &	Bridson,	 1997)	 to	
hundreds of kilometres (Grenouillet et al., 2001; Rook, Hansen, & 
Gorman, 2012; Tedesco, B., Paugy, D., & Fermon, Y., 2004). This sug‐
gest a species‐specific (i.e. trait‐based) mechanism contributing to 
patterns of spatial autocorrelation among stream fish populations. 
However, we know of no study that has examined how species traits 
affect patterns of spatial structure of stream abundance in the river 
network hierarchy. Understanding how species traits influence 
cross‐scale patterns of spatial structure represents a step towards 

integrating life‐history theory into population ecology across spatial 
scales (Chevalier et al., 2014).

The goal of this study was to identify the role of species traits in 
determining spatial autocorrelation of stream fish abundance at and 
across discrete spatial scales. We accomplished this goal by addressing 
three objectives. First, we used random effects models to quantify the 
amount of variation in stream fish abundance explained by categorical 
spatial groupings (autocorrelation of abundance of each species at each 
scale) of increasing size—ranging from local reaches (i.e. sites, <1 km2), 
to whole streams (~90 km2), to progressively larger catchments (up to 
~22,000 km2). This variation is represented as intraclass correlation co‐
efficients (ICCs): one ICC per species (N	=	47)	per	spatial	scale	(N = 5). 
Second, we used a Bayesian hierarchical approach to estimate regres‐
sion slopes quantifying change in ICCs with increasing spatial scale. 
These slopes represent the effect of increasing scale on observed spa‐
tial autocorrelation of abundance for each species. In level 2 of this 
model, we modelled the slopes from level 1 as functions of key species 
traits (e.g. life history and dispersal) that have been shown to affect 
other ecological process such as recruitment synchrony (e.g. Chevalier 
et al., 2014) and community structure (e.g. de Bie et al., 2012), but 
are yet to be examined for spatial patterns of stream fish abundance. 
The Bayesian hierarchical approach allowed us to assess cross‐scale 
patterns in magnitude of effect of spatial grouping (scales) on abun‐
dance autocorrelation, but did not inform on general patterns of spatial 
grouping (i.e. whether abundance was autocorrelated at large or small 
scales).	Accordingly,	we	used	ordination	 to	 reduce	dimensionality	 in	
ICCs and then regressed the dominant eigenvector on species traits. 
This approach complimented the Bayesian analysis in providing infer‐
ence on aggregate patterns of spatial structure of abundance. Overall, 
our analyses allowed us to draw inference on the role of endogenous 
factors affecting the spatial structure of stream fish abundance.

2  | METHODS

2.1 | Fish abundance and trait data

The data used in this study came from an ongoing stream sampling pro‐
gramme conducted by the North Carolina Department of Environment 
and Natural Resources (NCDENR) Division of Water Resources 
Biological	Assessment	Branch.	Since	1991,	a	standardised	protocol	has	
been used to sample almost 1,000 stream reaches throughout North 
Carolina (Figure 1). Sample sites are wadeable 183‐m (600 ft.) steam 
reaches. Reaches are sampled approximately once every five years, 
mainly	 between	 April	 and	 June,	 although	 some	 are	 sampled	 more	
frequently. Sampling included backpack electrofishing units (most fre‐
quently two units), along with an appropriate number of dip netters 
based on the stream size. Reaches were sampled using two‐pass de‐
pletion covering all available habitats; the first pass moved upstream, 
while the second pass returned downstream. Given the uniform sample 
size (reach length) and effort (2‐pass removal), all sampling units were 
treated as equal and catch can be directly compared among samples. 
All	individuals	were	collected	and	identified	to	species.	Unidentifiable	
individuals of all sizes were preserved in 10% neutrally buffered 
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formalin	and	identified	upon	return	to	the	laboratory.	Additional	pro‐
grammatic details can be found in the Standard Operating Procedures 
(NCDENR,	2006).	Although	175	species	were	represented	in	the	data,	
we	limited	our	inference	to	only	those	species	that	had	≥5	records	of	
sampling in 4 or more basins (HUC6s, see below), and which did not 
have very low detection probabilities (Peoples & Frimpong, 2011); this 
resulted in n	=	47	species	(Appendix	S1,	Table	S1).

To represent spatial scales of increasing size (at scales greater 
than the reach level), we adopted hydrological unit codes (HUCs; 
Seaber,	 Kapinos,	 &	 Knapp,	 1987),	 which	 represent	 nested	 catch‐
ments. Our smallest scale was the reach level (183‐m reaches, 
n	=	365),	 with	 areas	 increasing	 to	 HUC12	 (87	±	1	km2, n	=	317),	
HUC10	(451	±	10	km2, n	=	176),	HUC8	(3,797	±	261	km2, n	=	47)	and	
HUC6	(22,661	±	2,362	km2, n = 14) (Figure 1). Based on our subset‐
ting, we were left with n	=	12,789	samples,	where	each	sample	rep‐
resents a count of unique species for a unique time and study site. 
All	spatial	units	at	the	HUC12	level	and	larger	were	aggregated	from	
site‐level captures. Sampling took place from 1991 to 2016.

2.1.1 | Fish traits

The trait categories of life history, macrohabitat preference and mi‐
crohabitat preference (Table 1) were extracted from the FishTraits 
database	 (Frimpong	 &	 Angermeier,	 2009).	 We	 used	 principal	 co‐
ordinate	 analysis	 (PCoA)	of	 Jaccard	dissimilarities	 (ideal	 for	 binary	
data) to reduce dimensionality in micro‐ and macrohabtiat prefer‐
ence data (Table 1). Because (a) life history was only represented 

by four traits, and (b) those traits were correlated with one another 
(0.51 > r> 0.86), we used only maximum total length and fecundity 
in subsequent analyses. These variables are hypothesised to have 
positive relationships with the size of the scale of effect for animals 
(Jackson & Fahrig, 2015; Miguet et al., 2016). Dispersal capabilities 
were represented by two morphological ratios that are closely re‐
lated	to	mobility	(Olden,	Poff,	&	Bestgen,	2008;	Poff	&	Allan,	1995).	
The first, termed “shape factor,’ is the proportion of the maximum 
body depth to the total length. The second, termed, “swim factor” is 
the proportion of the depths of the caudal fin and caudal peduncle 
(Webb & Weihs, 1986). These variables were either obtained from 
Buckwalter (2016) or measured directly from Jenkins and Burkhead 
(1994).

2.2 | Quantifying variability within spatial scales

We used a Bayesian hierarchical approach to quantify spatial cor‐
relation within species across spatial scales. Our approach is super‐
ficially similar to quantifying spatial autocorrelation by examining 
distance decay of semivariance in some population metric (e.g. 
abundance or recruitment). However, our approach differs in sev‐
eral key aspects. First, it allowed us to estimate not only scale of 
effect (a goal of correlogram analysis), but also correlation patterns 
across discrete scales. Second, the hierarchical approach allowed us 
to retain error structure to a level 2 model examining the factors 
that drive those correlations across scales. Finally, the multivari‐
ate approach allowed us to assess cross‐scale patterns as a whole 

F I G U R E  1  Spatialisation	of	North	Carolina	used	in	this	study.	(a)	Location	of	North	Carolina	within	the	eastern	USA;	(b)	locations	of	study	
sites (stream reaches); (c) HUC12s; (d) HUC8s; (e) HUC10s; (f) HUC6s
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by quantifying general patterns of ICCs across scales (i.e. whether 
species abundances were autocorrelated at large or small scales).

To accomplish this, we first quantified the amount of within‐
species variability in abundance at each spatial scale. To do this, we 
modelled log‐transformed abundance (comparable to the transform 
used in a Poisson model for count data) using random intercept mod‐
els, in which the random effect represented the focal spatial scale

where log(yi) is the log abundance of sample i in n samples, αj[i] is the 
estimated mean log abundance of sample i nested in spatial scale 

j, and α2 is the residual variance. We ran the model separately for 
five spatial scales ( j = 5): reach, HUC12, HUC10, HUC8 and HUC6. 
The random intercepts αj[i] were assumed to come from a normal 
distribution

with mean abundance μα and within‐species variance �2
�
 To quantify 

the amount of variability attributable to the spatial scale, we esti‐
mated the proportion of within‐species variance compared to the 
total variance, σ2, using the intraclass correlation coefficient (ICC),

ICCs are similar to a Pearson correlation coefficient, but they 
range from 0 to 1, with 0 indicating no detectable variance explained 
by the random effect, and 1 indicating all the variance in the data 
can	be	explained	by	the	random	effect.	All	estimates	of	ICCs	were	
done using the lmer function in the lme4 package in R version 3.3.2 
(R Development Core Team, 2016).

2.3 | Modelling ICCs

2.3.1 | Bayesian hierarchical beta regression

Once we estimated abundance autocorrelation at each spatial scale 
(ICCs), we sought to quantify (a) species‐specific patterns of ICC 
change across spatial scales, and (b) how species traits affect those 
patterns. To do this, we used beta regression—a regression model 
suited for modelling proportion data (Ferrari & Cribari‐Neto, 2004), 
such as ICC values. We adapted a Bayesian hierarchical model of 
beta regression and included both random intercepts and slopes for 
each	species	(assuming	our	47	species	are	drawn	from	a	larger	group	
of species). The beta regression was modelled as

Species‐specific intercepts and slopes were estimated for 
j	=	47	species.	The	intercepts	(αj) describe the ICC at the site level, 
and the slopes (βj) describe the change in ICC with increasing size 
of spatial scale (i.e. catchment area, km2); x is the log of the mean 
size of each spatial grouping based on HUCs in North Carolina. 
Slopes and intercepts were allowed to vary among species and 
were assumed to come from a multivariate normal (MVN) distribu‐
tion for the slopes and intercepts and a normal probability distri‐
bution for loge‐transformed ϕj with mean μϕ and variance �2

�
 When 

modelling the beta distribution, second parameter, φ (precision), 
is also estimated; however, this was not a parameter of interest 
in our model, and therefore, we allow it to vary among species 
but do not further analyse it. The variance–covariance matrix was 
modelled using the scaled inverse Wishart distribution (Gelman 
&	Hill,	2007).	Level	2	of	the	model	was	parameterised	as	follows:

log
(
yi
)
=�j[i]+�2

�j[i] ∼N
(
�� ,�

2
�

)

ICC=
�2
�

�2
�
+�2

logit
(
ICCi

)
=�j[i]+�j[i]×xi

TA B L E  1   Twelve species traits used as independent variables in 
models predicting cross‐scale patterns of stream fish abundance in 
North	Carolina,	USA

Group Variables Description

Macrohabitat Lacustrine Preference for lacustrine (i.e. 
lakes) habitats

Macrohabitat Lowland Preference for lowland streams

Macrohabitat Upland Preference for upland streams

Macrohabitat Montane Preference for montane streams

Macrohabitat Large river Preference for large rivers

Macrohabitat Small river Preference for small rivers

Macrohabitat Springs Preference for springs

Macrohabitat Creek Preference for small streams

Microhabitat Slow current Preference for slow current 
velocity

Microhabitat Moderate 
current

Preference for moderate current 
velocity

Microhabitat Fast current Preferences for fast current 
velocity

Microhabitat Prefers lotic Preference for lotic (flowing 
water) streams

Microhabitat Prefers 
lentic

Preference for lentic (slow water) 
streams

Life history Total length Maximum reported total length

Life history Fecundity Maximum reported number of 
eggs

Life history Age	at	
maturation

Earliest reported age a sexual 
maturity

Life history Maximum 
lifespan

Maximum reported lifespan

Physiological 
tolerance

Maximum 
tempera‐
ture 
tolerance

Maximum temperature observed 
in species’ range (see Frimpong 
&	Angermeier,	2009	for	
calculation)

Swimming 
ability

Swim factor Ratio of maximum caudal fin 
depth to maximum caudal 
peduncle depth

Swimming 
ability

Shape factor Ratio of maximum body depth to 
total length

Trophic Trophic level Mean trophic level obtained from 
Froese and Pauly (2012)
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where γ terms represent level 2 regression coefficients, subscript 0 
indicates the intercept, and subscripts 1–5 are the slope coefficients 
for each predictor, Z.	 All	Z values are species‐level predictors for 
j	=	47	species.	�2

�
 is the among‐species variance for intercepts, and �2

�
 

is the among‐species variance for slopes. ρ is the between‐species 
correlation. Traits in the hierarchical beta regression were notated as 
total length (ZTL), macrohabitat (ZMacro), fecundity (ZFec), shape factor 
(ZShape) and microhabitat (ZMicro) (Table 1).

For all hierarchical Bayesian models, three Markov chains were 
run with each chain beginning with a different random starting value. 
From a total of 300,000 samples from the posterior distribution, the 
first 50,000 samples of each chain were discarded, and then, every 3rd 
sample was retained for a total of 150,000 samples used to character‐
ise the posterior distribution. To assess convergence, we examined the 
scale reduction factor R̂, a convergence statistic, for each parameter 
in addition to evaluation of trace plots and plots of posterior distri‐
butions.	Analyses	were	completed	using	JAGS	in	the	R2jags package 
(Plummer, 2013) run within R (R Development Core Team, 2016).

2.3.2 | Relating overall ICC patterns to species traits

The Bayesian hierarchical models inform on the strength of the 
relationship between within‐species abundance autocorrelation 
with increasing spatial scale, but do not adequately characterise 

general or aggregate patterns. For example, ICCs of many species 
had discrete breakpoints at different scales; this information is not 
fully	 retained	 in	 the	slopes.	Accordingly,	we	 reduced	dimension‐
ality in cross‐scale ICC patterns to calculate a metric of general 
spatial structure across scales. To do so, we first calculated Bray–
Curtis distances on the scale‐by‐species ICC matrix (in which col‐
umns were spatial groupings/scales, rows were species, and values 
were ICCS). We then reduced dimensionality on this matrix using 
principal	coordinate	analysis	(PCoA),	producing	eigenvectors	rep‐
resenting general patterns of species whose abundance are auto‐
correlated on a gradient of large to small scales. We then modelled 
this eigenvector as a function of species traits to understand how 
traits affect general patterns of spatial autocorrelation of abun‐
dance across scales. Prior to analyses, we sought to account for 
phylogenetic signal in species traits at the family level. To do so, 
we initially screened traits for family‐level differences using anal‐
yses	 of	 variance	 (ANOVA).	 Because	 traits	 differed	 significantly	
among families (but very weakly and only among a few pairs of 
families;	Appendix	S1,	Table	S2),	we	used	a	random	effects	model	
to account for this variation. This consisted of modelling each trait 
as a function of a random intercept of family; the residuals from 
these models represent trait variation that cannot be explained by 
within‐family differences. While this approach is not as resolute 
as eigenvector‐based methods on phylogenetic distance matrices 
(Diniz‐Filho,	Sant'Ana,	&	Bini,	1998),	it	is	satisfactory	at	this	phy‐
logenetic scale (sensu Mahoney et al., 2015; Marczak, Thompson, 
&	Richardson,	 2007).	 Finally,	 we	 used	multiple	 linear	 regression	
to relate the ICC eigenvector to species traits. In all analyses, we 
defined statistical significance as 95% confidence intervals of 

⎛
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F I G U R E  2   Diagram showing the sequential analyses used in the study
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parameter estimates not overlapping 0. Figure 2 shows the se‐
quential relationship of the steps in our statistical analysis.

3  | RESULTS

3.1 | Trends in cross‐scale abundance correlation 
and reducing dimensionality

Random effects models calculated ICCs that were quite variable 
among	species	across	spatial	 scales,	 ranging	 from	0	 to	0.87;	mean	
ICCs (plus standard deviation, s) for all species combined at each scale 
(from site level to HUC 6) were 0.51 (s = 0.18), 0.48 (s	=	0.17),	0.37	
(s = 0.16), 0.23 (s = 0.16) and 0.13 (s = 0.14). However, it was clear 
that ICC values generally declined with increasing scale (Figure 3), 
with the exception of Centrarchus macropterus (whose ICCs changed 
little	among	scales).	The	first	PCoA	eigenvector	reducing	dimension‐
ality of ICCs explained 60% of the variance in ICCs across the five 
spatial scales. ICCs at all spatial scales were positively correlated 
with this eigenvector. However, ICCs at the three smallest spatial 
scales (site, HUC12 and HUC10) were correlated much stronger with 

this	eigenvector	than	ICCs	at	larger	scales	(Table	2).	Accordingly,	in‐
creases in this eigenvector represent increasing affinities for species 
abundances to structure at smaller and smaller spatial scales.

3.2 | Effects of traits across spatial scales

PCoA	delineated	macro‐	and	microhabitat	affinities	among	species	
that represent a gradient ranging from lentic and lacustrine systems 
in lowland regions, to lotic systems in upland/montane regions. The 
first macrohabitat eigenvector described 50% of the variation in 
species macrohabitat affinities. This variable was negatively corre‐
lated with lacustrine and lowland habitats, and positively correlated 
with montane and upland systems (Table 2). The first microhabitat 
eigenvector described 62% of the variation in microhabitat affinities 
among species. This variable was negatively correlated with slow 
current velocities and lentic microhabitats, and positively correlated 
with lotic, moderate and fast current velocities (Table 2). These vari‐
ables were used as independent variables in level 2 of the hierar‐
chical Bayesian model and in multiple linear regression predicting 
changes in ICCs across spatial scales.

F I G U R E  3   ICC estimates by species over five spatial scales. Species are sorted in descending order by site‐level ICC. The x‐axis is the 
logarithmic scale of km2, with designations (tick marks) for where mean values for each spatial grouping occurs
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All	hierarchical	models	converged,	which	was	assessed	through	
visual trace plots and all estimated R̂ < 1.1. The first level of the hi‐
erarchical Bayesian beta regression modelled ICCs by spatial scale 

for	each	species	(Figure	4).	Anticipating	high	interspecific	variability	
in ICCs, the second level of this model estimated effects of species 
traits on ICC trends across spatial scales. This level revealed fecun‐
dity as the only significant predictor of the rate of change in ICCs 
from small to large spatial scales, having a positive effect (Figure 5).

Multiple linear regression identified macrohabitat affinity and 
shape factor as significant predictors of aggregate ICCs across spa‐
tial	 scales	 (0.54	±	0.23	 and	 0.09	±	0.04	 respectively).	 In	 general,	
abundances of species that have larger shape factors (longer total 
length, relative to height; terete or fusiform body shape) and are 
associated with more upland/lotic systems tend to aggregate at in‐
creasingly smaller spatial scales. Likewise, abundances of species that 
have lower shape factors (generally taller and laterally compressed) 
and are associated more closely with lowland and lacustrine habi‐
tats tended to aggregate at larger spatial scales (if at all). Maximum 
total	 length	 (0.01	±	0.04),	 microhabitat	 affinity	 (−0.28	±	0.12)	 and	
fecundity	 (0.03	±	0.04)	 were	 not	 significant	 predictors	 of	 the	 ICC	
eigenvectors. Our results were not strongly phylogenetically driven; 
means were not significantly different (p > 0.05) for some traits, and 
those with significant (p < 0.05) differences were driven usually by 
one	or	two	families	(Appendix	S1,	Figure	S1).

4  | DISCUSSION

Our results demonstrate the role of endogenous factors in deter‐
mining spatial structure of stream fish abundance. Cross‐scale pat‐
terns of abundance were correlated within spatial scales ranging 
from local sites to large catchments, and the scale of correlation 
differed significantly as functions of key species indexing species 
habitat	requirements,	dispersal	ability	and	life	history.	Abundances	

TA B L E  2   Correlations between primary eigenvectors and the 
original data used to calculate them for three principal coordinates 
analyses on three separate sets of variables: intraclass correlation 
coefficients (ICC), macrohabitat preferences and microhabitat 
preferences

Variables ICC
Macrohabitat 
eigenvector

Microhabitat 
eigenvector

Site 0.93 ‐ ‐

HUC12 0.95 ‐ ‐

HUC10 0.92 ‐ ‐

HUC8 0.75 ‐ ‐

HUC6 0.59 ‐ ‐

Lacustrine ‐ −0.73 ‐

Lowland ‐ −0.77 ‐

Upland ‐ 0.47 ‐

Montane ‐ 0.75 ‐

Large river ‐ −0.31 ‐

Small river ‐ −0.39 ‐

Springs ‐ 0.27 ‐

Creek ‐ −0.04 ‐

Slow current ‐ ‐ −0.71

Moderate current ‐ ‐ 0.69

Fast current ‐ ‐ 0.67

Prefers lotic ‐ ‐ 0.88

Prefers lentic ‐ ‐ −0.69

F I G U R E  4   Beta regression fits for 
47	freshwater	fish	species	over	5	spatial	
scales. These regression lines are the 
output from the betareg function in R, in 
which each species solely informs its own 
beta regression model
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of species in our study system were structured mostly at smaller 
spatial scales (stream reaches and small catchments), although some 
species showed little change across scales.

The relationship between abundance correlation and spatial 
scale varied among species, but was significantly related to species 
habitat	requirements.	Abundances	of	species	requiring	upland	lotic	
habitats were more correlated at small spatial scales, while species 
preferring lowland lentic systems showed little correlation at any 
scale. Furthermore, abundances of stream fishes adapted to upland 
flow regimes (more fusiform/terete to thrive in habitats of higher 
flow; e.g., Notropis spp.) were more correlated at increasingly smaller 
scales. This pattern likely represents the dynamic relative influence 
of dispersal and local habitat requirements at different positions 
in the stream network (Brown et al., 2011; Swan & Brown, 2011). 
For example, the high natural heterogeneity of upland streams can 
cause site‐ and stream‐specific (i.e. HUC12) effects in population 
processes that depress dispersal (Cattanéo et al., 2003), despite 
being mediated by larger‐scale climactic processes (Grenouillet et 
al., 2001; Labbe & Fausch, 2000; Tedesco et al., 2004). Conversely, 
local habitat features may play less of a role in structuring population 
processes in lowland streams because they lie in closer fluvial prox‐
imity to mainstem rivers, which supply a large number of immigrants 
to their tributaries, thus structuring population processes through 
dispersal	 (Grenouillet,	 Pont,	 &	 Hérissé,	 2004;	 Hitt	 &	 Angermeier,	
2008).	 Accordingly,	 the	 relative	 effects	 of	 stream	 network	 topol‐
ogy may be evident in spatial scaling of stream fish abundance via 
the traits that determine the distribution of species throughout the 
stream network.

In addition to habitat requirements, life‐history traits also in‐
fluenced spatial structure of stream fish abundance. Hierarchical 
Bayesian regression results suggest the relationship between abun‐
dance autocorrelation and increasing spatial scale was stronger on 
species with lower fecundities; these results are in line with life‐his‐
tory	 theory.	Along	with	generation	 time	and	 juvenile	survivorship,	
fecundity is a keystone trait in the tri‐lateral life‐history continuum 

model of freshwater fishes (Winemiller, 2005; Winemiller & Rose, 
1992). In minimising fecundity, fishes can optimise either juvenile 
survivorship (the “equilibrium” life‐history strategy) or population 
generation time (the “opportunistic” strategy). Interspecific variation 
in the life‐history continuum has been shown to affect the spatial 
scaling	 of	 large‐river	 fishes	 in	 Africa	 (Tedesco	&	Hugueny,	 2006).	
However, these were for “periodic” species (optimising fecundity at 
the expense of the other two traits), which are poorly represented 
in wadeable streams because they are large‐bodied and require pre‐
dictable variations in abiotic conditions (Mims & Olden, 2012; Olden 
& Kennard, 2010). Chevalier et al. (2014) found that recruitment of 
opportunistic strategists (i.e. early maturing serial spawners with 
small clutch sizes) was more correlated than other life‐history strat‐
egists. In the present study, the observed relationship represents a 
shift away from opportunistic strategies from uplands to lowlands. 
In optimising generation time, opportunistic strategists are ideally 
adapted for the highly variable abiotic conditions in upland streams 
(Winemiller, 2005). These results demonstrate that accounting for 
interspecific variation in species life history can improve our ability to 
understanding large‐scale spatial patterns in population processes.

Placing our results in the context of other studies of freshwater 
fishes is difficult; we know of no other study that has examined ef‐
fects of species traits on scale of effect for stream fish abundance. In 
fact, a recent meta‐analysis Jackson and Fahrig (2015) examined evi‐
dence between key species traits and scale of effect for abundances 
of	several	vertebrate	groups.	Although	they	found	little	evidence	of	
an effect, no studies were available for fishes—a point that highlights 
the opportunities for exploring spatial scaling relationships among 
freshwater fishes. We can, however, relate our work to studies that 
have sought to understand scale of effect for other aspects of stream 
fishes. For example, many studies have sought to understand the 
spatial scale at which population processes such as recruitment syn‐
chronise, finding patterns between 50 km (approximately the HUC8 
scale;	 Myers	 et	 al.,	 1997)	 and	 100	km	 (approximately	 the	 HUC6	
scale; Cattanéo et al., 2003; Grenouillet et al., 2001; Tedesco et al., 
2004). Ours is most similar to Chevalier et al. (2014), who examined 
how spatial synchrony patterns varied with species traits. However, 
we studied adult abundance, not recruitment, and our study had no 
temporal component. The role of dispersal in determining spatial 
scale of abundance correlation is surely quite different between the 
two processes and should be studied further in stream fishes.

Similarly, many studies have examined the role of species traits for 
determining spatial scale of community and metacommunity structure 
in stream ecosystems (Saito, Soininen, Fonseca‐Gessner, & Siqueira, 
2015;	Strecker	et	al.,	2011).	A	common	finding	among	these	studies	is	
that key traits such as dispersal ability and body size disrupt metacom‐
munity structure by swamping the effects of local variables (de Bie 
et	al.,	2012;	Grönroos	et	al.,	2013;	Padial	et	al.,	2014).	Just	as	meta‐
communities are homogenised by highly dispersing species (Leibold et 
al., 2004), we found that abundance autocorrelation of species with 
high dispersal ability is homogenised at large spatial scales. Like stud‐
ies of recruitment synchrony, we can only draw limited comparison 
with these community‐level studies. However, our work does touch 

F I G U R E  5   Effect of log(fecundity) on species‐specific beta 
regression slopes. Points represent species‐specific beta regression 
slopes of ICC over spatial scales with lines representing the 90% 
credible intervals. The blue solid line represents the hierarchical 
regression. (Note that the slopes do not perfectly correspond 
with those from Figure 4 because the hierarchical model uses 
information from all species and all data points, which results in a 
small amount of parameter shrinkage towards the means.) The grey 
polygon indicates the 95% credible interval on the slope
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on a common theme emerging in the literature: cross‐scale patterns in 
aquatic communities are affected by species traits.

Identifying the spatial scales of effect on abundance autocorrela‐
tion provides context for observations across broad spatial extents 
and helps generate predictions and testable hypotheses for popula‐
tion structure (Tobin, 2004). Large‐scale relationships between abun‐
dance and distribution have been described for a diversity of taxa 
(Brown, 1984), although to date much of this work has focused on 
terrestrial organisms (see Jackson & Fahrig, 2015 for a review). While 
it might be expected that species abundances are more similar at 
smaller spatial scales that at larger spatial scales, our study is among 
the first to quantify this for a diversity of stream fishes. More impor‐
tantly, the degradation of abundance similarity with increasing scale 
is heterogeneous among species; some freshwater fish maintained 
similar abundances at the catchment and basin scale, while others had 
dissimilar abundances beyond very small areas (HUC12). Species‐spe‐
cific expectations of abundance are not only useful from a manage‐
ment perspective—for example helping to design efficient sampling 
and conservation programmes—but also help shed light on abundance 
variability and extirpation risk for sensitive and threatened species.
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