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Abstract. Fisheries monitoring programs around the world are often designed to provide information on a wide range of
species that come into contact with the program gear(s). Such programsmay provide untapped abundance and distribution

data for species of greatest conservation need (SGCN) and other rare or data-deficient species.We examined.30 years of
fish sampling data from coastal Louisiana and found that 13 of 18 SGCNmarine fishes were represented in existing routine
monitoring data. Although some species were rarely reported,.100 records were available for seven species, with some

species being reported several thousand times. Using these records, we were able to provide species-specific information
about gear, season, location and timing for several marine fishes that were considered largely unknown. Given the paucity
of information available for these species and the rapidly changing Louisiana coast, these biogeographic data may be

important in the development of future conservation and management programs.
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Introduction

Monitoring wild fish populations provides a multitude of bene-

fits, many of which are tied to information regarding species
range, distribution and abundance that can then be used to inform
management programs. For example, long-term monitoring of

fish populations can advance understanding of spatial and tem-
poral patterns of species distribution and change (McClelland
et al. 2012;Ho et al. 2020), inform conservation (Ojeda-Martı́nez

et al. 2007), and provide reference information to guard against a
shifting baseline (Magurran et al. 2010). Long-term monitoring
of fishes takes place across the globe; for example, the Inter-
national Bottom Trawl Survey (IBTS) in the North Sea (ICES

2012) and the AIMS (Australian Institute of Marine Science)
Long-TermMonitoringProgram1 inAustralia have collected fish
data for decades. In the USA and elsewhere, fishery-independent

monitoring programs (FIMP) are usually considered target or
surveillance monitoring (Nichols and Williams 2006). Target
monitoring is often characterised by data collection specific to

one or a few hypotheses, whereas surveillance monitoring tends
to bemore of an omnibus sampling program that generates data to
be used opportunistically as needs arise (Nichols and Williams

2006). The reality of fish monitoring is that most programs are a

combination of targeted and surveillance monitoring. Often one
ormore gear(s) are used because of their high selectivity for some

target species (usually recreational or commercial species of
interest); however, many gears have some selectivity for a wide
range of species and can generate data for non-specific uses

(Franco et al. 2012; Pasquaud et al. 2012). Regardless of
the monitoring program, many fishes remain poorly detected
or absent from sampling, which has led to an imbalance in

biological and ecological knowledge about individual fish
species (Maxwell and Jennings 2005).

Although fishes have been monitored around the world in
myriad ways that reflect the diversity of species, habitats and

logistical and financial restrictions, the value of fishery-
independent monitoring is widely acknowledged. For example,
in the Pacific, fishery-independent surveys provided better

management confidence and economic benefits over fishery-
dependent data alone in the Torres Strait rock lobster, Panulirus
ornatus (Fabricius), fishery (Dennis et al. 2015). In the Medi-

terranean Sea off Spain, fishery-dependent and fishery-
independent data were combined for optimal information for
elasmobranch species (Pennino et al. 2016); fishery-dependent

data were found to be predictive on the basis of environmental

1https://www.aims.gov.au/docs/research/monitoring/reef/reef-monitoring.html.
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correlates, whereas fishery-independent data were demon-
strated to better describe spatial presence–absence (PA).

Finer-resolution data may be available from FIMPs in countries
with greater monitoring resources; however, there is still the
potential for valuable species and habitat information to be

generated with limited resources and simple monitoring designs
(Joseph et al. 2006; Zhao et al. 2017).

USA state resource agencies often carry out FIMPs to

generate long-term abundance and distribution data that can be
incorporated into stock assessments of commercially and recrea-
tionally exploited species. For example, the Louisiana Depart-
ment of Wildlife and Fisheries (LDWF) employs a diversity of

gear in their long-term sampling program to maximise capture
efficiency for targeted species and detection probability for as
many additional species as possible (LDWF 2015). The stan-

dardised FIMP for marine and coastal fishes used by LDWF is
based on methods developed during the Cooperative Gulf of
Mexico Estuarine Inventory and Study (Perrett et al. 1971), and

was fully implemented by 1986 (see LDWF 2015, for additional
description). The finfish sampling program is based on a variety
of gear types across a range of habitats to provide information on
different life stages of estuarine-dependent fishes. The most

common gears used are a 15.24-m bag seine, a 228.6-m experi-
mental gill-net, a 228.6-m trammel net, a 4.88-m inshore trawl, a
1.83-m inshore trawl, and a 6.10-m nearshore trawl. Other gears

have been used over time (e.g. electrofishing) and are also
present in the dataset. Many gears are used year-round, whereas
others are fished during specific seasons when the gear is safe to

deploy and targeted organisms are available. For full program-
matic details, see LDWF (2015).

In Louisiana’s estuaries, many abundant species with high

capture probabilities are well represented in the long-term FIMP
database, e.g. red drum, Sciaenops ocellatus (Linnaeus), black
drum, Pogonias cromis (Linnaeus), and Atlantic croaker,Micro-

pogonias undulatus (Linnaeus). However, sampling efforts pro-

vide collection data on all species encountered by the gear,
including data that may not be of immediate interest to managers
and therefore goes unanalysed. Louisiana’s Wildlife Action Plan

(WAP; Holcomb et al. 2015) includes species of greatest conser-
vation need (SGCN) for awide range of taxa, including 18marine
fishes. Fishes are assigned SGCN status following an extensive

review of literature and research and input from stakeholders. The
process follows congressional and Association of Fish and
Wildlife Agencies (AFWA2012) guidance to determine distribu-
tion and abundance of wildlife and fish species, particularly those

with lowor decliningpopulations or thatmaybe indicator species.
Louisiana’s SGCN species were originally listed in 2005 and
updated in 2015 (Holcomb et al. 2015). In addition toG (global)

and S (state) rankings, the 2015 revision also prioritises species
into three tiers on the basis of decreasing needs for conservation.
Although the study of SGCN fishes is common (and related to the

lack of information on these species), it is now being recognised
that not only might SGCN designations be improved with more
data, but thatSGCNfishes also represent anunderstudiedgroupof

species that may yield insights on fish assemblage and habitat
changes on the basis of compilations of existing data (Faucheux
et al. 2019). For example, Sindt et al. (2012) studied 84wadeable
streams to generate predictivemodels for seven SGCN fishes, and

Schloesser et al. (2012) evaluated different gear types and their

effect on detection probabilities for imperilled riverine fishes.
Despite these nascent efforts, few studies have reported on SGCN

fishes, and even fewer on marine fish SGCN.
Analyses of monitoring data in the context of SCGN could

provide a critical first step towards understanding species

distributions and abundances over time. In addition, given the
ecological significance of predicted changes to coastal habitats
in Louisiana (Couvillion et al. 2011) and other globally

threatened coasts, an accounting of marine fish SGCN could
prove to be incredibly valuable as coastal management plans
are developed and habitats are prioritised for restoration. Both
PA and abundance information could directly inform the design

of future fieldwork to improve our understanding of these
understudied marine fishes. Consequently, our objective was
to use several decades of FIMP data collected across coastal

Louisiana to advance our understanding of the distribution and
abundance of marine fish SGCN. Specifically, we sought to
determine (1) representation of different SGCN in the dataset,

(2) seasonal patterns of occurrence and, when possible,
abundance (in the form of catch per unit effort; CPUE),
(3) associations between specific sampling gear and
specific species, and (4) spatial and/or temporal patterns of

species occurrence.

Materials and methods

Data usage

We examined .30 years of existing FIMP data for marine fish

SGCN sampled by LDWF (Fig. 1). Initial analyses were
designed to extract and analyse species-specific information
such as month, gear and location of captures. For uncommon

species (,100 samples), we retained all samples and did not
estimate effort because so few individuals were captured;
however, for the sixmost commonly sampled SGCN species, we
did account for effort. Although effort data should be consistent

across years (each gear has its own deployment schedule
determined by the sampling program), we still extracted effort
from the sampling because of both year-to-year variability in

effort and changes in effort due to changes in sample sites. For
example, hurricanes and other disruptions resulted in years with
a lower effort, whereas addition of sites over time resulted in

long-term effort increases. Effort was defined here as a sampling
event that used standardised methodologies, such as, for
example, a standardised trawl sampling event. Catch was
defined as the abundance of a given species within a sampling

event. The following four of the six most common species were
most often reported in seine gear: bayou killifish (95% of
samples), diamond killifish, (95%), saltmarsh topminnow, (87%

of samples) and chain pipefish, (62% of samples). Southern
puffer and violet goby were both collected in trawls 90% of the
time they were reported. CPUEwas calculated using those most

common gear for each respective species, as described above.
We had opportunistic sampling records going back to the

1960s, and although we initially evaluated SGCN in the entire

dataset, we truncated our data analyses to begin in 1986 when the
sampling program was standardised. Excluding data before this
time period should have reduced potential effects of gear changes
and other sampling inconsistencies, and generally produced

results consistent with the contemporary sampling program.
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Data analysis

So as to model (non-linear) change in individual species CPUE

over time, we used generalised additive models (GAMs) for the
six species with the most data (we were hesitant to make long-
term inferences for species that were not well represented).

GAMs serve as an appropriate model for our analysis because
their non-parametric flexibility permits the data to determine the
shape of the model, as opposed to parametric models where the

shape of trends is constrained by the model (Yee and Mitchell
1991). This results in the relationship between explanatory and
response variables being estimated as a smoothing function. The
ability of GAMs to detect non-linear trends and be applied to

multiple distributions was required, given the variability and
unknown distributions associated with SGCN sampling (Guisan
et al. 2002). GAMs are applicable to any likelihood-based

regression and served in this analysis to automatically esti-
mate the non-linear effect of our covariate, time (years; Hastie
and Tibshirani 1986). Our models were fit with a normal dis-

tribution and the thin plate spline smoothing function (Wood
2003), which serves as the most general and widely applicable
spline (Pedersen et al. 2019). These splines are most appropriate
for investigating unknown trends where seasonality is not

expected, while still maintaining statistical integrity and
avoiding problems with knot placement. The basis dimension
(i.e. number of knots) was fixed at k ¼ 5 to prevent overfitting.

Our model had the form

g E Yð Þð Þ ¼ an þ
XJ

j¼1
fj xjn
� �

where E(Y) is the expected CPUE, with a normal distribution
and an identity link function g(), an is the intercept for each
group (species, n), and fj is the smooth function of the covariate

(years, j) xjn, for each species. Time was the only regressor
included in our GAMs, so as to isolate its effect on CPUE.
GAMs were fit with the restricted maximum-likelihood meth-

odology to further penalise overfitting and provide a more

optimal handling of variability (Wood 2011). Further, GAMs

were evaluated on the basis of residuals and effective degrees of
freedom to ensure reasonable fitting under the constraint of
k ¼ 5. All models were fit in the R Statistical Programming

Language and Environment (R Core Team 2020) with the mgcv
package (Wood 2011).

Results

Of the 18 marine fish SGCN listed in the Louisiana WAP, 13
species are on record as having been captured in FIMP of the

LDWF (Table 1). The database included 6768 samples that
contained at least one capture of these 13 SGCN, with a total of
42 777 individual observations of SGCN coastal fishes. By

species, the total number of individual species collected ranged
from five (smalltooth sawfish and gold brotula) to 15 787
(southern puffer; Table 2). Species records were available from

1966 to 2018, and although we report the total numbers from the
entire dataset, subsequent analyses are focussed on the more
recent period of standardised sampling (1986–2018).

Gear

A total of 17 gears detected fishes in the dataset, although sev-
eral gears detected multiple SGCN; for example, individual fish
were reported in one of six different mesh-size panels

in experimental gill-nets. For our analyses, we pooled specific
gear into seven common gear types (Fig. 2). Among these,
the 15.24-m bag seine (n ¼ 7419) and 4.88-m otter trawl

(n ¼ 6220) had the most samples containing SGCN, with all
other gear containing 502 or fewer total captures of SGCN
coastal fishes. The cast net, wing net and gill-net encountered

the fewest SGCN fishes.

Timing of capture

Although not all sampling gear are deployed uniformly through-
out the year, some sampling did take place eachmonth.Across the

dataset, November yielded the greatest number of samples
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containing any SGCN fishes (n ¼ 6440), whereas April samples

contained the fewest (n ¼ 1407). Bayou killifish, diamond killi-
fish and saltmarsh topminnowall showed the highest frequencyof
occurrence in fall and winter samples, whereas southern puffer

was detected most often in the summer and fall (Fig. 3). Chain
pipefish was encountered consistently uniformly throughout the
year, whereas violet goby was more abundant in spring samples

than in samples from the rest of the year. Other species were
sampled too infrequently to infer seasonal patterns, although for

these species, detection and non-detectionmay be amore relevant
metric than increases or decreases in sample occurrence.

Capture locations

All coastal basins in Louisiana reported some occurrence of
marine fish SGCN. Although the larger basins (Barataria Bay,
Calcasieu, Lake Pontchartrain, Terrebonne and Vermilion-

Teche) reported the most occurrences of SGCN fishes, some
species were frequently detected in basins where few other
species were found. Capture locations varied among species

(Figs 4, 5); for example, although both chain pipefish and dia-
mond killifish were considered abundant (n . 1000 samples),
chain pipefish was found in nearly all basins in coastal Louisi-
ana, whereas diamond killifish was absent from three basins.

When examined over time (Fig. 5, Supplementary materials
Tables S1–S6, available at the journal’s website), some spatial
patterns emerged. During the start of the sampling timeframe

(1986–1989), SGCN fishes were sampled in more major basins
(6 of 6), and more different species (8 of 9) were sampled in the
estuaries, notably Calcasieu (Table S3), the westernmost coastal

area of the state. The period 1990–2009 was characterised by
SGCN species being captured more often in the Terrebonne and
Vermilion-Teche basins and relatively less in the other four

basins. During the most recent period from 2010 to 2018, SGCN
species again appeared more widespread among basins, similar
to the earliest time period.

Temporal trends

The GAM analyses indicated the factor year was estimated as a

significant smooth (P , 0.05) for four of the six species, sug-
gesting significant changes in the CPUE of these species sam-
pled over time (Fig. 6). Violet goby and chain pipefish were the

Table 1. List of 18 marine fish species of greatest conservation need

(SGCN) as provided in the Louisiana Wildlife Action Plan (2017)

Tiers, G-rank (global status rank), and S-rank (subnational status rank) are

defined in the WAP and included here for reference. The ‘Data Available?’

column indicates whether the species has been captured and therefore data

are available from the Louisiana Department of Wildlife and Fisheries

fishery-independent sampling program; 13 of 18 species have some amount

of data available for study. The relative captures represent the number of

sampling events in which the species has been present; rare species have

been sampled less than 100 times; common species have been sampledmore

than 100 times but less than 1000 times; abundant species have been sampled

more than 1000 times

Common name, scientific name G-rank S-rank Data

available?

Sampling

encounters

Tier I

Smalltooth sawfish,

Pristis pectinata

G1G3 S1 Yes Rare

Saltmarsh topminnow,

Fundulus jenkinsi

G3 S3 Yes Abundant

Texas pipefish,

Syngnathus affinis

G1 SU No None

Goliath grouper,

Epinephelus itajara

G2 S1 No None

Tier II

Diamond killifish,

Adinia xenica

G5 S4 Yes Abundant

Bayou killifish,

Fundulus pulvereus

G5 S4 Yes Abundant

Opossum pipefish,

Microphis lineatus

G4G5 SU No None

Chain pipefish,

Syngnathus louisianae

GNR S4 Yes Abundant

Tier III

Tarpon,Megalops atlanticus G5 S3 No None

Gold brotula,

Gunterichthys longipenis

GQ SU Yes Rare

Dwarf seahorse,

Hippocampus zosterae

GNR SU Yes Rare

Large-scaled

spinycheek sleeper,

Eleotris amblyopsis

G5 S4 No None

Emerald sleeper,

Erotelis smaragdus

GNR SU Yes Rare

Frillfin goby,

Bathygobius soporator

GNR S4 Yes Rare

Violet goby,

Gobioides broussonnetii

G5 S4 Yes Common

Broad flounder,

Paralichthys squamilentus

GNR SU Yes Rare

Southern puffer,

Sphoeroides nephelus

G5 S5 Yes Abundant

Lemon shark,

Negaprion brevirostris

GNR S3 Yes Common

Table 2. Total number of detections (N), total number of samples

detecting at least one individual of the species, and the peak month(s)

and most common gear(s) associated with the 13 SGCN marine fishes

NA indicates that there was not enough data to confidently report

Common name n Samples Peak month(s) Most common

gear

Southern puffer 15 787 2030 June Trawl

Diamond killifish 14 157 1044 December Seine

Bayou killifish 6293 844 December Seine

Chain pipefish 4019 1804 October Seine/trawl

Saltmarsh

topminnow

1501 359 November/

December

Seine

Violet goby 779 561 April Seine/trawl

Lemon shark 103 62 October Gill-net/

trammel net

Frillfin goby 63 24 October/

November

Seine/trawl

Broad flounder 45 17 March Seine

Emerald sleeper 14 13 NA NA

Dwarf seahorse 6 3 NA NA

Smalltooth

sawfish

5 2 NA NA

Gold brotula 5 5 NA NA
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two species with non-significant temporal relationships

(P¼ 0.25 and P¼ 0.36). Trends for both species were likely to
be non-significant because of the variability in year-to-year
CPUE, because variations from higher CPUE to successive

near-zero values are likely to have weakened the effect of year
as a smoother. The GAMs detected long-term decreases in
bayou killifish, diamond killifish and southern puffer over three
decades. Although both killifish species have been encountered

in several samples in recent years (Fig. 6), southern puffer has
not been caught in sampling since 2010. This decline and dis-
appearance of southern puffer may be due to a shift in sampling

stations that took place in the mid-1980s, while the monitoring
program was becoming standardised (and possibly because of
the fact that Louisiana is at the edge of the species distribution

where population fluctuations may be large). Saltmarsh top-
minnow was the only species to show a significant increase in
CPUE over the past 30 years, with an exponential increase

especially noticeable in the current decade. GAMswere not only
successful in presenting the long-term trends, but their flexi-
bility sufficiently captured the non-linear and variable nature of
fish observances.

Discussion

Species of greatest conservation need are often classified as such
because they are data-deficient, and we lack understanding about

their basic ecology and distributions. However, this study dem-
onstrated that 72% (or 13 of 18) of SGCN fishes and their asso-
ciated locations were represented in a public, state-agency long-
term monitoring database. In fact, 7 of 13 species encountered

were sampled in every month of the year (pooled over multiple
years), suggesting possible year-round residency and persistent
populations. Further, we considered 5 of the 13 species abundant,

as defined by being represented in .1000 samples over several
decades of sampling, and none exhibited substantial declines in
sample numbers through time thatwould have suggested spatially

extensive population problems across the coast.

Spatial and temporal trends

Long-term sampling suggested some seasonality of occur-
rences, both species-specific patterns for some species and the
larger, overall seasonality of more SGCN fishes collected in the
fall. Higher fall catches could be explained by juveniles having
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had a full growing season and being large enough by fall to
recruit to the sampling gear, although size data would be needed

to further support this idea. Some species (e.g. lemon shark,
Negaprion brevirostris [Poey]) may use inshore habitats only
for part of the year or part of their life cycle, and, as such, it
would not be expected to encounter them without considering

species-specific patterns. Some marine SGCN were basin-
specific, but most were widespread across coastal Louisiana.
Our findings suggest that SGCN may be more widespread than

previously considered, albeit with substantial differences in
local occupancy and abundance.

We used GAMs because we were not testing any hypotheses

about species occurrences over time and simply wanted a
flexible model that could pick up on any (non-linear) changes
over many years of sampling. In addition, we needed one model
that could be adapted to several datasets with different trends, a

purpose GAMs are well suited for with their non-parametric
base.Whereas other time-series models such as ARIMAmodels
expect evenly spaced data, the smoothing function of GAMs

allowed our models to handle missing years where no effort was
recorded by pooling estimates to a mean function value

(Simpson 2018; Pedersen et al. 2019). Other time-series models,
such as dynamic linear models, were not used for this analysis

because we were interested in identifying long-term, general
trends, as opposed to more responsive methods that estimate at
shorter scales. In summary, our data were not a good fit for the
model assumptions forARIMA, temporal covariance structures,

or dynamic linear models. Although the majority of our species-
specific GAMs showed a statistically significant smoothing
function, this is more a result of minor non-linearities that are

likely to be present in any fish sampling and not the result of a
rigorous trend-detection technique. In fact, although some
species have shown declines over time (e.g. bayou killifish,

diamond killifish, and southern puffer), most species were still
sampled at low levels over the decades of records that we
analysed, whereas saltmarsh topminnow displayed an increase
in CPUE over time.

Changing coast – changing distributions?

Changes in coastal marine fish species distributions can be

expected or unexpected, depending on the location. However, in
coastal Louisiana, habitats have been changing rapidly for the
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past century and are expected to continue to change at rates
higher than in most other coastal locations. Thus, findings from
coastal Louisiana may offer insights into future changes glob-
ally, because low-elevation coastal regions, such as the Ganges

River delta, Pacific islands, and north-western and south-eastern
Europe, may eventually face similar magnitudes of land loss.
Although coastal Louisiana fish species have shown less

distributional change than might be expected (Cowan et al.

2008) given dramatic environmental changes (Couvillion et al.

2011), some of this change may not have been reported and

could still occur in the future. Much of coastal Louisiana has
been altered or exploited by human activities, which has come at
a cost to fish habitat (Chesney et al. 2000).

In particular, the Mississippi River Delta has experienced
extensive changes over the past century that have resulted in a
large amount of coastal land loss. To combat land loss, a series of
sediment diversions has been proposed that could dramatically

alter sediment flows, salinity, water temperature and other core
aspects of fish habitat (Elsey-Quirk et al. 2019). Sediment
diversion discharge scenarios and their salinities could be

further evaluated (as in simulations) to better predict how
marine SGCN fishes will respond (Das et al. 2012). In fact,

individual-based modelling of fishes in coastal Louisiana has
predicted movements of up to 35 km from diversion sites, along
with an increase in individual dispersal (Nyman et al. 2013;
Rose et al. 2014). There is considerable uncertainty regarding

predictions of marine fish SGCN population trends in coastal
Louisiana. Despite decades of habitat change and stress, many
(commercial and recreational) fish species appear resilient

(Chesney et al. 2000). However, if fish do not move or cannot
migrate (e.g. smaller-bodied killifish species), they may also be
subjected to suboptimal environmental conditions that could

reduce fitness and survival. Moreover, it could be very risky to
expect continued resilience in the face of continued habitat
changes (Cowan et al. 2008; Nyman et al. 2013), or to assume

that SGCN demonstrate the same resilience that the more
commonly monitored species show.

Design of future sampling

Some type of targeted or designed monitoring is recommended
for marine fish SGCN. Low occurrence (or detection) of some
species may be due to low population size, or it may be from low

detection probabilities, and the fishes we called rare may be
more common than data would indicate. Furthermore, estuarine
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fish species may follow different distributional patterns based
on commonness or rarity (Magurran and Henderson 2003).

Although many sampling gears are used in the state’s moni-
toring program, gear choice has likely not been based on
effective sampling of marine fish SGCN. A greater diversity of

gear types andmore sampling should result inmore captures and
thus more inference; however, there are specific sampling
design elements that should be considered over simply recom-

mending more sampling. As Nichols and Williams (2006) rec-
ommend, surveillance monitoring, although more common,
offers poor trend detection and weak inferences, and these
sampling weaknesses are further limited by the often-infrequent

catches of SGCN. Targeted monitoring of SGCNwould provide
advantages over surveillance monitoring and likely result in
more and stronger information about these under-studied spe-

cies. Trend detection can also be part of the survey design;
recommendations exist on statistical methods, such as Bayesian
dynamic linear models, that offer improved trend detection over

traditional methods (Wagner et al. 2013).
In addition to building on the information presented in this

study, such as, for example, species-specific capture relation-
ships for gear, month and location, SGCN fishes could be

monitored for abundance or simply presence–absence.Although
abundance sampling may provide more information, PA sam-
pling has strong financial benefits (i.e. almost always cheaper),

and under certain conditions can outperform abundance sam-
pling formonitoring (Joseph et al. 2006). If a species is expected
to be recorded.16 times per year, then an abundance survey is

recommended; however, infrequently sampled species would
likely benefit from a PA sampling design. For Louisiana’s
marine fish SGCN, several species, such as the killifishes we

identified as abundant, could be monitored with the existing
FIMP in areas of rapid coastal change (e.g. fragmentation and
reduction in marsh edge and submerged aquatic vegetation;
Jerabek et al. 2017) to monitor and project future population

trends given observed changes in marsh habitat. For those
common or rare species, a PA survey could be developed on
the basis of existing species associations included in this study.

Independent of our study, general recommendations and simu-
lation studies can be used to guide fish monitoring nearly
anywhere. For instance, in addition to the general points made

above about abundance versus PA sampling, program aspects
such as sampling frequency, timing and intensity have been
simulated so as tomake recommendations about designs that are
better for measuring species richness, diversity or community

sampling (Zhao et al. 2017). Xu et al. (2015) evaluated sampling
in China’s Yellow Sea and concluded that a stratified random
design had benefits for low-abundance (and aggregated) species,

which could have implications for rare and imperilled species.
Along with refinement and development of traditional moni-

toring programs, fish managers across all habitats should not

discount opportunities for other sampling approaches. For
instance, environmental DNA (eDNA) is increasingly being used
to test for aquatic species and has been used to sample for rare

(macroinvertebrate) species (Mächler et al.2014), estuarine fishes
(Ahn et al. 2020) andmarine fishes (Thomsen et al. 2012). eDNA
holds the promise of efficiency, namely, small amounts of sample
(water) could be used to detect a large number of species, and

gains in sample efficiency could be invested in broader spatial and

temporal coverage. Yet, despite the potential in eDNA, coastal
aquatic habitats in Louisiana often exhibit warm temperatures,

high turbidity, high biological activity, low dissolved oxygen and
frequent water movement, which degrade eDNA fragments and
reduce sampling effectiveness (Eichmiller et al. 2016; Sassoubre

et al. 2016) and capture of eDNA that become adsorbed into
sediments (Barnes et al. 2020). For SGCN fish, eDNAhas special
promise because it results in potentially less disturbance to fish

and habitat (Ahn et al. 2020; Jerde 2021), although perhaps at the
cost of some lost precision on location (Dressler et al. 2020).
Given the rarity of these species, degradation or loss of detectable
eDNA from an already low concentration would likely be a

challenge to implementing current eDNA methods and will
require further investigation (e.g. Harrison et al. 2019; Barnes
et al. 2020; Lacoursière-Roussel and Deiner 2021).

Finally, SGCN are often rare, making them of interest to
conservation groups. Herein lies some potential for encounter-
based citizen science (Bear 2016). Although community-based

reporting may be infrequent and non-probabilistic in design, it
could be free data and still provide PA inferences across large
scales. Regardless of how SGCN sampling may progress in the
future, it is likely that many existing sampling programs

throughout the world contain unanalysed data on rare species.
It is also true that with some development of sampling programs,
a much greater volume of data could begin to inform a wide

variety of species about which we currently claim to know little.
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