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This study examines the misuse of normality tests in
linear regression within ecology and biology, focusing on
common misconceptions. A bibliometric review found that
over 70% of ecology papers and 90% of biology papers
incorrectly applied normality tests to raw data instead
of model residuals. To assess the impact of this error,
we simulated datasets with normal, interval, and skewed
distributions across various sample and effect sizes. We
compared statistical power between two approaches: testing
the whole dataset for normality (incorrect) versus testing
model residuals (correct) to determine whether to use a
parametric (t-test) or nonparametric (Mann-Whitney U test)
method. Our results showed minimal differences in statistical
power between the approaches, even when normality was
incorrectly tested on raw data. However, when residuals
violated the normality assumption, using the Mann-Whitney
U test increased statistical power by 3-4%. Overall, the study
suggests that, while correctly testing residuals for normality
enhances model performance, the impact of testing raw data is
negligible in terms of power loss, especially with large sample
sizes. The findings highlight the need for more awareness
of proper statistical practices, especially in evaluating the
assumptions of linear models.

1. Introduction

The majority of commonly used frequentist, parametric

) o statistical techniques depend on the assumption that data
Electronic supplementary material is available

online at https://doi.org/10.6084/
m9.figshare.c.7752365.

follow a particular probability distribution in order to calculate
p-values. The normal distribution is the most commonly used
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probability distribution in this context, both because the central limit theorem applies to many [ 2 |

scientific sampling processes and because maximum likelihood estimation can be done using the
computationally simple least squares method. The importance and ubiquity of the normal distribu-
tion have led to the development of many statistical tests to quantify whether a sample of data
has characteristics consistent with having been sampled from a normal distribution. Perhaps the
first such test was Pearson’s Chi-Square [1], as it can compare observed and expected frequencies
under a particular distribution (including the normal distribution). More formal normality tests were
developed in the 20th century with the introduction of the Kolmogorov-Smirnov test [2] and the
Shapiro-Wilk test [3], both of which are well-known and commonly used at the time of this writing.
Since the mid-20th century, normality tests have proliferated; recent estimates suggested that at least 40
normality tests exist [4]. In that time, a number of studies have evaluated different sensitivities, power,
and performance of normality tests (e.g. [5-7]), including several that used a normality test comparison
to introduce their own normality test (e.g. [4,8,9]). Despite this array of testing procedures, a persistent
question facing statistical practitioners, particularly in ecology, is when and why normality tests should
be applied and the degree to which statistical inferences depend on the results of such tests.

One of the most common applications of normality tests is in the evaluation of assumptions
in linear statistical models, including linear regressions and analysis of variance (ANOVA). The
assumptions of linear regression are well known: that the relationship between the response and
predictor is linear, and the residual errors are independently and identically distributed with a
mean of 0, a constant variance (homoscedasticity), and follow a normal distribution [10]. Potential
violations of this final assumption of normality garner considerable attention, and authors in a
range of journals often report evaluating whether that assumption is met. Indeed, studies going
back to the mid-20th century (e.g. [11-13]) have addressed the violation of the normality assump-
tion (among other regression assumptions and conditions), yet more recent studies continue to
point out that normality is often an overlooked assumption in regression analysis [14,15]. With
linear regression techniques continuing to grow in popularity, use and development (e.g. general-
ized linear models, hierarchical models), uncertainty about how violations of model assumptions
affect statistical inferences remains a concern.

An odd twist to conversations about addressing model assumptions is that there is a widespread
misconception about what quantities need to be normally distributed in a valid regression model.
Although textbooks and many other sources correctly explain that the model error terms (i.e. residuals)
should be normally distributed, there is a commonly held —and incorrect—belief that the underlying
raw data being modelled must follow a normal distribution. We base this statement on our own
experience as reviewers and editors for ecological journals, but Kéry and Hatfield [16] also noted that
testing (raw) data for normality is ‘by far the most common misconception we have come across...in
general linear models’. Although we are not sure where this misconception came from, it is common
for studies to report that they tested their data for normality (e.g. [14]). Even more concerning is that
this incorrect assumption continues to be promoted in the published literature (e.g. [17,18]); Marmo-
lejo-Ramos and Gonzalez-Burgos [19] go so far as to say that parametric tests require ‘observations
follow a bell-shaped distribution and that they peak around the mean’.

Ultimately, concerns about applying normality tests and whether model residuals are normally
distributed are related to statistical inferences about the linear model. If the residuals are not nor-
mally distributed, is the associated p-value incorrect? Is it better to use a non-parametric test in such
cases? Do parametric tests or nonparametric tests provide more statistical power to reject a false null
hypothesis in those circumstances? Additionally, if a normality test is used inappropriately (e.g. by
testing raw data instead of model residuals), how does that affect the analysis? We address those
questions here in an effort to characterize the degree to which scientists should be concerned about the
normality assumption in linear models. We address this issue in the context of null hypothesis testing
using p-value cutoffs; that is, rejecting a null hypothesis if p < 0.05. There are many valid reasons to
avoid the cutoff approach [20,21], but see Murtaugh [22] for why it provides a straightforward way
to compare the ability of different approaches to detect true differences between sampled populations
(i.e. the Type II or false negative error rate).

In this study, we had two objectives. First, we conducted a bibliometric review to estimate the
specific types of normality tests being used in peer-reviewed articles in ecology and biology and
to assess the appropriateness of their usage—e.g. whether they tested raw data or residuals for
normality. The second objective was to conduct a simulation analysis that evaluated the power to
detect a statistical difference between two samples when the data have either normally- or non-nor-
mally distributed residuals. In doing this we simulated common statistical workflows, including the
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application of both parametric linear models and a nonparametric alternative, and evaluated when [ 3 |

deviations from normality reduced statistical power.

2. Material and methods

2.1. Bibliometric review

We conducted a bibliometric literature review to quantify the use of several popular normality tests.
The objective of this review was to first describe what the current conventions are for normality
tests in biology and ecology, and second, to inform some of the tests we would adopt for later
simulation modeling. We conducted a literature search on 23 October 2023 to enumerate putative uses
of nine different normality tests reported in the ecological literature (see table 1 for the lists of tests).
The search was conducted in Google Scholar because Web of Science (and comparable bibliometric
databases) often does not search the full text of articles, and normality tests are not commonly included
in the title, abstract or other searchable article metadata. As important as they may be, normality tests
are often diagnostic and not a primary methodology that warrants high-level reporting. Although
Google Scholar searches the entire article text, there were still some search limitations. For example,
we were not able to search by discipline or category of journals, because these fields do not exist
as search options. As a workaround, we specified our search parameters so that only journals with
the term biology or ecology in the title were searched. We recognize that this is an imperfect method
to exhaustively search the full disciplines of biology and ecological journals. Nevertheless, this bias
was imposed on all searches and the results likely included enough journals that we expect to have
detected the general trends within the disciplines. We also recognize that normality tests are widely
used in many fields beyond biology and ecology; however, we wanted a field that was large enough to
(likely) have all tests represented, while still confining our search to a specific discipline. (In addition,
the study authors operate in the fields of biology and ecology, so we felt most comfortable working
with this literature.) For each search, we used the name of the test in addition to the term normality,
because some of the tests have applications beyond normality testing.

After doing a search for frequencies of normality tests, we selected the Shapiro-Wilk test [3] for
further investigation. Specifically, we repeated the search described above for uses of the Shapiro-Wilk
test of normality, but this time limited the search to only peer-reviewed studies published in 2022.
The reason for this was (i) to limit the overall number of search results, (ii) have the search results
represent usage in the current literature, and (iii) evaluate the use of the test (i.e. what is being tested
for normality?) based on a range of journals. We reviewed the first 50 studies in the search results
(as reported by Google Scholar based on relevance) in both biology and ecology that were in Web of
Science Indexed journals and were available as full text to the authors. We evaluated the use of the
test based on language in the study that described whether the Shapiro-Wilk test was used before any
linear model, such as testing the response or predictor variables (i.e. the raw data) for normality, or
whether the Shapiro-Wilk test was used after any linear model, such as to evaluate the model residuals
for normality. Based on best practices for linear modeling, we classified the use of normality tests on
the raw data as inappropriate and use of normality tests on the model results as appropriate.

2.2. Simulation study

2.2.1. Baseline normality comparisons

We designed a simulation study to evaluate the effects of different approaches to using normality
tests in a typical linear regression workflow. First, prior to testing any workflows, we simply sought
to quantify the performance of common normality tests to understand baseline detection rates of
different normality tests on a single sample from different data types. For this baseline comparison, we
generated nine types of simulated data (with 10 000 data sets per simulation) representing all combina-
tions of three sample sizes (1 = 10, 20 and 50) and three types of true underlying data distributions
(normal, interval and skewed). The normal distribution was specified with a mean of 0 and standard
deviation of 1, the interval distribution was specified with a lower bound of -2 and upper bound of
2, a mean of 0 and a standard deviation of 1.5, and the skewed (lognormal) distribution was specified
with a mean of 0 and standard deviation of 1, both of which are on the log scale. For each data set, we
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Table 1. Percentage of usage results from a bibliometric search (in October 2023) in Google Scholar for frequencies of normality tests
appearing in published literature. The total number of reported uses of all terms by discipline (biology or ecology) are reported at the
bottom of the table. The bold text in the 'test’ column indicates the word used as search term, along with normality.

test hiology ecology
iro-Wi 50%

tested the null hypothesis that the sample was drawn from a normal distribution using the Shapiro-
Wilk test [3], the Kolmogorov-Smirnov test [2], the Anderson-Darling test [23] and the Lilliefors test
[24], four of the most commonly used normality tests in biology and ecology. Although we did not
have strong hypotheses about these tests, we did expect to see some differences. For instance, the
Kolmogorov-Smirnov test is based on expectations about the asymptotic behaviour of the maximum
distance between an empirical distribution function and the normal cumulative distribution, and thus
should only be reliable for large sample sizes; the Lilliefors test was designed as an improvement
of that testing approach. By contrast the Shapiro-Wilk test compares the empirical distribution to
the theoretical expectation across the entire distribution and is generally considered one of the most
powerful normality tests. The Anderson-Darling test is conceptually similar but uses a weighting
function to place more weight on the tails of the distribution, so could be expected to perform better on
skewed distributions.

2.2.2. Simulation design

After comparing the overall performance of the different tests, we wanted to create a simulation
approach that better captured the use and workflow of normality testing in linear regression. To
do this, we generated random samples of data from three sets of distributions (figure 1). The first
distribution was a normal distribution that was included as a control group. The second distribution
we examined was for interval data, which we generated from a truncated normal distribution bounded
by 0 and 1. Interval data may appear to be normal when the mean is near 0.5 and the standard
deviation is small, but the tails are truncated at 0 and 1 rather than extending from - to e as a normal
distribution does. Interval data often arise in ecology (e.g. survival rates) and there is a long history
of applying transformations to such data [25], in order to apply least squares methods that require the
assumption of a normal error distribution. The third distribution we evaluated was for skewed data,
which we generated from a log-normal distribution that had one long asymmetric tail. Log-normal
distributions are also common in nature [26] and are often transformed to reduce skewness prior to
using least squares methods.

For each of the three distributions, we created simulations that varied in sample size and effect
size, both of which affected the power of statistical tests. Each simulated comparison used a dataset
with samples drawn from two different groups and tested the null hypothesis that the two groups had
different true means. We varied sample size such that groups had Ngroup = 10, 20 or 50 samples. Ngroup
=10 was included to represent a realistically low group sample size for study. Ngroup = 20 represented
a medium-sized group; n = 20 is around the size where the t and z distributions become similar.
Finally, n = 50 was used as the large sample size group, beyond which (e.g. Ngroup > 50) we would
not expect simulation results to be particularly sensitive to sample size. For effect size, we used the
well-established Cohen’s d = 0, 0.2, 0.5 and 0.8, which correspond to no effect (i.e. the null hypothesis
is true), and weak, moderate and strong effect sizes [27]. Because we simulated data with the same
standard deviation, we calculated Cohen’s d with a pooled standard deviation (among groups) and
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Figure 1. Visual representations of the distribution types (normal, interval and log-normal) used in t-tests and Mann-Whitney tests
with data generated from three different effect sizes. The scenario of no effect (effect size = 0) is not shown, although it was included
in the study.

focused on manipulating the mean differences between the two groups in order to change the effect
size (figure 1). This led to 36 different simulation scenarios: four effect sizes and three sample sizes for
each of three distributions (see figure 2 for the simulation study design).

We performed 10000 replicate simulations for each of the 36 scenarios (resulting in n = 36 000
iterations for the entire study). Each iteration followed the same set of analytical decisions, which
we designed to mimic the way ecologists often apply tests for normality (figure 2). We summarize
the steps here and then give further details in the next subsection. First (Analytical Decision 1), the
two samples in the simulated dataset were pooled and tested for normality using the Shapiro-Wilk
test, and we recorded whether the dataset 'passed' (i.e. did not reject the null hypothesis that the
pooled dataset was drawn from a normal distribution) or 'failed (i.e. the null hypothesis of normality
was rejected) the test. The Shapiro-Wilk test was selected over other normality tests because of its
power and common usage; we wanted our simulations to reflect common protocols. Next (Analytical
Decision 2), we performed both a t-test and a nonparametric Mann-Whitney U test [28] to test the
null hypothesis that the means of the two groups did not differ. We used a t-test as it is the two-sam-
ple version of a linear model and shares the same assumptions as ordinary linear regression and
analysis of variance. The Mann-Whitney U test is a nonparametric rank-based test; it is often used
as a nonparametric alternative to the t-test although technically it is testing the null hypothesis that
the two samples are drawn from the same distribution, not that they are drawn from populations
with the same mean. In any case, it can be used to make similar inferences, and when residuals are
normally distributed it has an 'efficiency’ that is 95% of the t-test (i.e. probability of correctly rejecting
a false null hypothesis; [29]). For each of the simulated datasets, we recorded the p-values and the
associated determinations of statistical significance (i.e., reject the null hypothesis or not), based on an
a = 0.05, from each of the two tests. Finally (Analytical Decision 3), we tested the residuals from the
t-test for normality using the Shapiro-Wilk test and recorded whether the test rejected (a = 0.05) the
null hypothesis of normally distributed residuals. This same set of procedures and tests was applied
to each dataset. This led to different possible analytical pathways based on the results of those tests,
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S
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36 simulations

Figure 2. Summary of the simulation and Analytical Decisions used in the study. The simulation design is described along the left side,
and the three Analytical Decisions that were used with the simulation data are described from top to bottom (MW = Mann-Whitney
test).

corresponding to three common sequences of tests that investigators follow when using normality
tests; we refer to these pathways as Analytical Decisions.

2.2.3. Analytical Decision 1: raw data fails normality test

Analytical Decision 1 (figure 2) followed an analysis sequence in which the raw data were pooled
across groups and tested for normality, and the null hypothesis that the data were normally distributed
was rejected. When this approach is followed, the investigator would typically then use a non-paramet-
ric test to evaluate the null hypothesis that the two samples are from different populations. Testing for
normality in this way is not the correct or recommended procedure, but it is a very common approach,
so we wanted to understand what consequences this approach would have for the overall test for
differences in sample means. Therefore after 'failing' the Shapiro-Wilk test for normality, each data set
underwent both a f-test and Mann-Whitney U test and we then compared the error rates by effect size,
sample size, distribution, and test type. Scenarios with effect size of 0 (no effect) were used to calculate
Type I errors (probability of rejecting a true null hypothesis, or false positive), while all other scenarios
were evaluated in terms of the Type II error rate (probability of failing to reject a false null hypothesis,
or false negative).

2.2.4. Analytical Decision 2: non-normal raw data passes normality test

Analytical Decision 2 (figure 2) followed an analysis sequence that is the alternative pathway to
Analytical Decision 1: the raw data was tested for normality and 'passed’, leading to a parametric test
(t-test) for differences in sample means. In this analytical decision, we only examined the datasets from
the interval and skewed datasets, so we dealt with the case when the data were actually non-normally
distributed but nonetheless 'pass' a normality test. We excluded the normal distribution from this
analytical decision because the intention was to examine data from non-normal distributions that
passed a normality test. As in Analytical Decision 1, testing the raw data for normality is not the
recommended procedure, but we include it because it is a very common approach that we want to
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better understand in terms of errors and outcomes. For the simulations that passed the Shapiro-Wilk

test for normality, each data set underwent both a f-test and Mann-Whitney U test and we then
compared error rates as described in Analytical Decision 1.

2.2.5. Analytical Decision 3: testing ANOVA residuals for normality

Analytical Decision 3 (figure 2) was designed to represent an appropriate use of normality tests, in
which a t-test is done on all simulated data sets, followed by a normality test on the model residuals.
For datasets in which the model residuals failed a Shapiro-Wilk test (i.e. were determined to be
non-normal), we compared the Type II error rate of the t-test to that of the Mann-Whitney U test. When
model residuals fail a normality test, there may be several options, but using a non-parametric (e.g.
Mann-Whitney U) is a common option, and we wanted to evaluate whether the Mann-Whitney U test
resulted in greater statistical power when the assumptions of normally distributed f-test residuals were
not met.

Note two important considerations about the simulations. First, although the Kolmogorov-Smirnov
test was a very popular normality test based on the literature, we only included it in the baseline
normality comparison and not the simulation study. We excluded it because it is not recommended for
sample sizes < 50 [8,30]. It is extremely conservative and in our exploratory tests, it found nearly all
datasets we tested to be non-normal, unlike the other three normality tests we used, which performed
similarly to each other.

3. Results

3.1. Bibliometric review

Frequencies of specific normality tests were comparable in both biology and ecology, with most tests
being about twice as frequent in biology as in ecology, which is likely attributable to the discipline of
biology being larger than ecology (table 1). (Note the D’ Agostino skewness test and D’ Agostino-Pear-
son omnibus test were extremely more frequent in biology than ecology, but this may be explained
by their uses beyond normality testing—despite our use of the term normality in the search.) In both
disciplines, the Shapiro-Wilk test was the most commonly used test, followed by the Kolmogorov-
Smirnov test. All other tests were reported at relatively low frequencies.

Based on 50 papers published in 2022 in both biology and ecology journals, we found the vast
majority of studies using normality tests with linear models were using them inappropriately (paper
details are in electronic supplement S1). Of the papers we reviewed, 90% of those in biology journals
and 70% of those in ecology journals reported using the Shapiro-Wilk normality test on the data
before doing any linear regression, and the outcome of the test often directly informed the subsequent
statistical test (i.e. parametric vs non-parametric test). Impact Factors of journals represented ranged
from 1.6-11.6 in biology and 1.4-8.8 in ecology, with no apparent trend of usage in relation to Impact
Factor (likely because there were so few correct uses).

Given the prevalence of incorrect normality testing in the biology and ecology literature, it is
important to evaluate whether these misapplications meaningfully impact the validity of statistical
inferences. If incorrect normality testing leads to (substantial) changes in power or error rates, it could
indicate a widespread problem in ecological and biological research. Conversely, if the consequences
are minimal, it would suggest that while incorrect, these practices may not necessarily undermine or
alter conclusions.

3.2. Simulation study

3.2.1. Baseline normality comparisons

Our first analysis evaluated how much agreement there was among normality tests and how tests
were performed under sample sizes and distributions. When applied to samples drawn from normal
distributions, all tests produced p-values that failed to reject the (true) null hypothesis of normality
95% of the time, which is consistent with the intended Type I error rate of 5% (table 2). When
data were drawn from an interval distribution, the tests failed to reject the false null hypothesis of
normality in 75-96% of simulations. Although there were slight differences in that proportion among
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Table 2. Baseline normality test performance. Cell values are the percent of 10 000 simulated datasets for each combination of
distribution and sample size that passed each of four different normality tests. (Here, 'passing' a normality test means that the test
failed to reject the null hypothesis that the sample data were drawn from a normal distribution).

distribution samplesize (n)  Shapiro-Wilk Kolmogorov- Anderson— Lilliefors

Smirnov Darling
normal 10 95% 95% 95% 95%

skewed 10 39% 0% 42% 53%
skewed 20 7% 0% 10% 21%
skewed 50 0% 0% 0% 0%

the different normality tests, there was a clearer pattern with respect to sample size, with all tests
producing consistently smaller p-values as sample size increased. In general, datasets with smaller
sample sizes drawn from interval distributions are less likely to include extreme values near the 0
and 1 limits and may, therefore, more closely resemble data sampled from a normal distribution,
while datasets with larger sample sizes are more likely to have well-defined bounds of the interval,
providing greater evidence of deviation from normality (figures 3 and 4). Simulations with data drawn
from skewed distributions 'failed" all of the normality tests at a higher rate than data drawn from
interval distributions, though like interval data there was a strong effect of sample size increasing the
power to detect deviations from normality (figures 3 and 4). For the smallest sample size (n = 10),
data drawn from skewed distributions "passed' normality tests approximately half the time (39-53%,
for all tests except Kolmogorov-Smirnov, which had a 0% rate of failing to reject the null hypothesis of
normality), while for the largest sample size (n = 50), the null hypothesis of normality was rejected for
all of the simulated datasets, using all of the normality tests. For the datasets drawn from interval and
skewed distributions, the Lilliefors test showed a slight, but consistently higher rate of failing to reject
the null hypothesis of normality, relative to the Shapiro-Wilk and Anderson-Darling tests. Overall, the
Shapiro-Wilk test had the lowest false negative error rate across the different distributions and sample
sizes, so used it as the primary normality test for subsequent analysis. This was also consistent with
additional recommendations from other studies [7,8,30].

3.2.2. Analytical Decision 1

For the simulated datasets drawn from normal and interval distributions, only about 5% were found
to be non-normal (Shapiro-Wilk p-value < 0.05), with a slightly higher rate of detecting non-normality
(15%) for datasets with large sample size and large effect sizes. (Even data from normal distributions
was more often identified as non-normal in cases of large effect sizes, because the combined samples
likely created a bimodality that made it harder to detect normality.) Skewed data simulations failed
normality tests at a high rate, ranging from 20 to 99% failure across nine simulations. For simulated
datasets from all three distributions, the Type I (false positive) error rates calculated on simulations
with effect sizes of 0 were similar and ranged from 4-6%, very close to the intended rate of 5%.
For the 27 simulation scenarios that had effect sizes > 0, the patterns of Type II error (false negative;
failing to detect non-normality) were similar across the three types of distributions and decreased with
increasing sample sizes and effect sizes.

The premise of this Analytical Decision was that an investigator has incorrectly applied a normality
test to raw data, and then chose to use a nonparametric test for the null hypothesis that the two
samples are from different populations. This would be a concern if the nonparametric test had less
power to detect true differences in this context. However, in scenarios with effect sizes >0 (i.e. the null
hypothesis is false), the t-test and Mann-Whitney U test had very similar Type II error rates (figure
3a). For datasets drawn from normal or interval distribution, the ¢-test Type II error rates were slightly
lower by an average of 1.9% and 1.3%, respectively. Skewed data showed lower Type II error rates for
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Figure 3. Type Il error rates (%) for Mann-Whitney U test and t-test for Analytical Decisions 1 and 2. Panels within each Analytical
Decision show combinations of the different baseline distributions that were used to generate the data, the effect size (right axis), and
the sample size (bottom axis). Acceptable error is represented by the light green area.

the Mann-Whitney test, although only by an average of 1.5%. Overall, the Type II error rates in this
Analytical Decision were similar between the t-test and Mann-Whitney U test, regardless of the overall
error distribution. The tests only produced a Type II error rate < 0.2 (corresponding to power of 0.8)
with a large effect size and sample size of n > 30.

3.2.3. Analytical Decision 2

In Analytical Decision 2, we examined the simulated datasets drawn from non-normal distributions
that 'passed' a normality test on the raw data (i.e. the set of simulations excluded from Analytical
Decision 1, but without those actually drawn from a normal distribution). For the 24 scenarios
investigated in this Analytical Decision, the number of simulated datasets that passed the normality
test was extremely variable. A total of 79-97% of simulated datasets drawn from interval distributions
passed normality, but only 11-48% of simulated datasets drawn from skewed distributions with the
low and moderate sample sizes passed, while < 1% of skewed simulated datasets with large sample
sizes passed the normality test (between 7-16 of 10 000 simulations).

In scenarios with effect size = 0 (null hypothesis was false) the Type I error rates (false positive) were
consistently between 4.9% and 5.4% for both distribution types and most sample sizes. The exception
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Analytical Decision 3: Residuals fail normality test
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Figure 4. Top panel: Type Il error rates (%) for Mann-Whitney U test and t-test for Analytical Decision 3. Panels within each Analytical
Decision show combinations of the different baseline distributions that were used to generate the data, the effect size (right axis), and
the sample size (bottom axis). Acceptable error is represented by the light green area. Bottom Panel: Differences in Type Il error rates
when comparing Mann-Whitney U test and t-test for Analytical Decision 3. Positive differences are shown in blue bars and represent
better performance by Mann-Whitney U test, while negative differences are shown in gray bars and represent better performance by a
t-test.

was that for datasets with large sample size drawn from a skewed distribution, the Type I error rate
was 0%, a function of the fact that only 8 simulations out of 10000 were included in this Analytical
Decision.

The pattern of Type II error rates (false negative) for the 18 scenarios with an effect size > 0 was
nearly identical to that in Analytical Decision 1, meaning that for a given effect size and distribution,
the Type II error rates tended to decrease substantially with sample size, but with weaker decreases for
lower effect sizes. This pattern was very similar for the two different distribution types. Overall, the
average Type II error rates were lower when using the t-test than the Mann-Whitney U test; however,
as in Analytical Decision 1, the differences were small (1.3 and 1.4% for the interval and skewed
distributions, respectively).
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3.2.4. Analytical Decision 3

Approximately 5-10% of simulated datasets drawn from normal and interval distributions had
residuals that failed the Shapiro-Wilk test, whereas datasets drawn from the skewed distribution
had residuals that failed the Shapiro-Wilk test at a high rate, ranging between 45 and 99% across
simulation combinations. Applying the Mann-Whitney U test to these datasets consistently provided
more power to detect differences between the groups (lower Type II error; note that this is a difference
from the results in Analytical Decisions 1 and 2). For datasets drawn from the interval distributions,
the Mann-Whitney test only decreased the Type II error rate by 1.3%, but in scenarios with data
sampled from the normal and skewed distributions, there was on average 3.1 and 3.4% (respectively)
lower Type II error using the Mann-Whitney test. One exception to the improved performance of
the Mann-Whitney test was the simulations with large sample size datasets drawn from interval
distribution, which showed weak evidence for the t-test having a lower Type II error rate.

4. Discussion

Our analysis of simulated datasets drawn from both normal and non-normal distributions indicates
that there is little difference in statistical power between parametric linear models and their non-para-
metric equivalents, regardless of the underlying distribution of the data. We considered two basic
approaches to concerns about data distributions. The first is commonly used, even though technically
incorrect: test the underlying raw data for normality before deciding whether to use a parametric
linear model or a non-parametric test. We found that regardless of the results of such a test, and
regardless of the actual distribution of the data, the parametric ¢-test had nearly identical power to the
non-parametric Mann-Whitney test. The key factors affecting the power to detect differences among
group means were the sample size and effect size, not the test or actual distribution. The second
approach we considered is a recommended best practice, which is to examine residuals for normality
after fitting a linear model. In that case we did find that if the residuals were found to deviate from
normality, using a non-parametric test provided greater power to detect differences in sample means,
but the effect was small (approx. 3%). Therefore, we find little cause for concern about mistaken use of
normality tests prior to model fittings, as well as renewed confidence in the robustness of parametric
linear models to deviations from the assumption of normally distributed residuals.

4.1. Analytical Decisions

While all normality tests performed similarly when data were normally distributed, discrepancies
emerged for non-normal data. The Shapiro-Wilk test consistently performed better, especially for
skewed distributions, where it outperformed alternatives like the Kolmogorov-Smirnov and Ander-
son-Darling tests. The Shapiro-Wilk test is sensitive to deviations from normality, particularly in
smaller sample sizes and non-normal distributions that likely improve its performance over other tests.
In contrast, tests like the Kolmogorov-Smirnov are more conservative, and often failed to reject the
null hypothesis for non-normal data, especially in small samples. We expected the Shapiro-Wilk test
to be one of the most reliable and versatile normality tests, and this suspicion was well supported and
confirmed our use of Shapiro-Wilk in the simulations.

Analytical Decision 1 represents an inappropriate use of a normality test, because the normality test
is used on the raw data and not the model residuals. In cases where the raw data fails in a normality
test, many users would pivot to a Mann-Whitney U test, and this Analytical Decision was designed to
understand the differences in statistical power when different tests are employed in this scenario. Our
scenarios found strong evidence that the Mann-Whitney test did not provide any increase in statistical
power. In fact, only for skewed data did we see a very marginal increase in power over a f-test,
while the t-test was slightly more powerful for the scenarios derived from the normal and interval
distributions. By far, increasing the group sample size, particularly with the high and moderate effect
size, was the greatest way to reduce Type II errors. Although we do not recommend ever using a
normality test on the raw data, there appears to be little consequence in terms of statistical power
between a parametric or non-parametric analysis of the data when the raw data are inappropriately
tested for normality. Findings from Analytical Decision 1 suggest that studies using the approach of
testing the raw data for normality, while flawed in their methodology, may still produce valid results
and conclusions. Our findings, however, do not justify the practice. We emphasize that more thought
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and focus should be placed on model design and validation instead of worrying about the distribution [ 12|

of the input data.

Analytical Decision 2 represented a second scenario where a normality test is inappropriately used
on raw data. However, unlike Analytical Decision 1, Analytical Decision 2 captures the cases when
data from non-normal distributions passes the normality test. In such cases, a t-test would almost
always be used because passing the normality test would not suggest a non-parametric alternative.
Our results suggest that although Type II error rates were on average lower with the t-test than with
the Mann-Whitney test, the differences were marginal and similar to Analytical Decision 1, a t-test
or a Mann-Whitney test would likely produce similar outcomes with little consequence of choosing
one test over the other. This result reveals another analytical consideration: researchers relying on
normality tests of raw data may be falsely reassured that parametric methods are appropriate. While
our results show little impact on power, they highlight how statistical misconceptions can shape
analytical workflows. Addressing this misconception would lead to better statistical habits and a
stronger emphasis on residual diagnostics rather than arbitrary normality tests.

Analytical Decision 3 was our only simulation of an appropriate application of a normality test in
linear regression, and this was the Analytical Decision that showed the greatest consequences of not
using a normality test, because when model residuals failed the normality test there was a modest
improvement in statistical power, 3 to 4%, when switching to a Mann-Whitney test.

4.2. Other study considerations

We could have selected other distributions to simulate, but interval data and skewed data are relatively
common, and they provided contrast in outcomes. Less common distributions would likely be less
applicable to analyses, in addition to many scientists knowing that uncommon and unique distribu-
tions require specific error distributions. We wanted our data to be decidedly non-normal, but still
common and commonly interpreted as normal.

Statistical transformations, such as logarithmic, arcsine and power transformations, have long been
used to address issues of non-normality and heteroscedasticity in data analysis. While these transfor-
mations can be useful for predictor variables, their application to response variables has become less
encouraged in recent years, in part because it can be hard to understand the mechanistic linkage
between a predictor and a transformed variable (for example, the log transform implies that variabil-
ity in the response is multiplicative on an arithmetic scale rather than additive, which may not be
biologically realistic). Instead, statisticians now recommend identifying and modelling the correct
underlying distribution that matches the response data. This approach, often implemented through
generalized linear models, allows for more accurate representation of the data’s natural structure
and avoids potential interpretation difficulties associated with back-transformation. Box and Cox [31]
introduced a family of power transformations, but modern statistical methods have evolved to directly
model non-normal response distributions, as discussed by Warton and Hui [25]. McCullagh and
Nelder [32] provided a comprehensive framework for generalized linear models, which has become
the preferred method for handling non-normal response data in many fields.

Lehmann [29] noted that non-parametric tests tend to have about 95% of the power that parametric
tests have. In our study, we saw very marginal differences in power. Averaged across all scenarios
using interval data, the t-test only detected significant results 1.3% more often than the Mann-Whitney
U test (scenarios ranged from 0.3 to 3.7%). Results were flipped for the skewed data simulations—the
Mann-Whitney test was about 1% more powerful at detecting significant results (scenarios ranged
from 0.3 to —3.0%). Taken together, it is hard to make a case for a clear advantage in statistical power of
parametric versus non-parametric tests.

For simplicity, we focused our simulations on two-sample tests of differences in means. However, all
linear models (linear regression, analysis of variance, etc.) ultimately depend on the same sum-of-squares
calculation of the deviation between the model expectation and residuals. Therefore, it is reasonable to
expect that our results would apply generally across the family of linear models, and that we can expect
those tests to be robust to deviations from normality, particularly with large effect sizes and sample sizes.

5. Conclusion

Normality tests can be extremely useful and powerful statistical tools that help us understand if a
sample of data exhibits the statistical properties of normality and thus can be thought of as coming
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from a normal distribution. Despite the clear purpose of normality tests, misunderstood assumptions
of normality in linear regression have led to (possibly widespread) inappropriate applications of
normality tests on raw data rather than on model residuals. Although this study strongly recommends
the appropriate use of normality tests in linear modelling—which is to evaluate the residuals and not
the raw data for normality —our simulations also show that if a normality test is applied to raw data,
the subsequent choice of a parametric or non-parametric test has little difference in power. In other
words, we found little change in outcomes between a t-test and a Mann-Whitney U test when the
raw data were tested for normality. We did observe, however, larger differences in statistical power
when normality tests are appropriately used —particularly when a Mann-Whitney test is used after
the detection of non-normal residuals, statistical power increases by 3 to 4%. In summary, we can
only recommend the appropriate use of a normality test, which remains testing the model residuals
for normality and making a decision about a non-parametric test, or another model, based on the
residuals. While we strongly recommend proper normality testing of residuals, our findings suggest
that incorrect normality testing of raw data—though methodologically flawed —may have little impact
on power. This finding does not mean that such practices should be encouraged, but it does suggest
that statistical training should shift its focus from overly rigid normality testing to broader principles
of model diagnostics and assumption checking. By understanding when statistical mistakes do and do
not matter, researchers can prioritize best practices that truly improve inference.
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