
Fish Manag Ecol. 2024;31:e12650.	 wileyonlinelibrary.com/journal/fme	   | 1 of 12
https://doi.org/10.1111/fme.12650

© 2023 John Wiley & Sons Ltd.

1  |  INTRODUC TION

Recreational fishing is an important social and economic activity 
in many countries worldwide with an average global participation 
rate of approximately 10% (Arlinghaus et al.,  2015). Given this 
high rate of participation, recreational fisheries have a substantial 

macroeconomic impact. For example, marine recreational fishers 
in Europe are estimated to have annual expenditures of €5.9 billion 
(Hyder et al., 2018) and the total economic impact of fishing in the 
U.S. is estimated at US$129 billion and 826,000 U.S. jobs when ser-
vice industry jobs and other angling-associated expenditures are in-
cluded (ASA, 2020). From a social perspective, recreational fishing 
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Abstract
Recreational fisheries represent a socially, ecologically, and economically signifi-
cant component of global fisheries. The U.S. Inland Creel and Angler Survey Catalog 
(CreelCat) database includes inland recreational fisheries survey data across the 
United States to facilitate large-scale analyses. However, because survey methods 
differ, a statistical method capable of integrating these surveys is necessary to as-
sess patterns and relationships across regions. Here, we developed a hierarchical gen-
eralized linear mixed modeling approach to estimate the relationship between daily 
recreational fisheries catch and effort based on waterbody, socio-economic, and eco-
logical covariates. We applied this approach to CreelCat data on lentic waterbodies 
and found that recreational fisheries catch and effort were non-linearly related (i.e., 
catch per unit of effort declined as effort increased), where effort varied regionally 
and by waterbody area, median county age, and distance to nearest primary road. 
This modeling approach could be used to inform data-poor regions or waterbodies, 
make comparisons across spatial scales, and, with the inclusion of socio-economic and 
ecological factors, inform management techniques in an era of shifting demographics 
and landscapes.
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can be enjoyed across ages, genders, races, and socio-economic 
statuses to provide a variety of angling opportunities to a diverse 
angling population (Connelly et al., 2001). Recreational fishing also 
strengthens social values and connections to provide a link to the 
outdoors and a sense of place and belonging in challenging times 
(Hailu et al.,  2005; Hunt,  2008). During the COVID-19 pandemic, 
anglers viewed fishing as a safe activity by “Social fishtancing,” (i.e., 
fishing alone or with friends and family at a safe distance; Midway 
et al., 2021) that benefits both physical and mental health (Howarth 
et al.,  2021). Therefore, the importance of recreational angling 
goes beyond just catching fish and providing a valuable social and 
economic activity. Recreational fisheries in the U.S. are generally 
managed at the state level, using variable techniques that yield 
non-uniform metrics, which challenges understanding of the social-
ecological implications and sustainability of recreational fishing at 
the landscape, regional, and national scales.

Social and physical environments surrounding recreational fish-
eries are constantly changing. Recreational fisheries increasingly 
face threats (e.g., climate change, overexploitation), meanwhile an-
gler communities are becoming more urban and diverse in language 
and culture (Arlinghaus et al., 2002; Murdock et al., 1996). Managing 
inland fisheries to meet the needs of a changing angling public under 
new conditions will require an understanding of how large-scale 
changes affect local systems (Hunt et al., 2016). Despite the growing 
recognition that recreational fisheries are complex social–ecological 
systems, which operate across large scales and a variety of disci-
plines (Nieman et al.,  2021), regional and national scale analyses 
have been mostly limited to extrapolations of angler expenditures 
(e.g., ASA, 2020). While expenditure reports are valuable for high-
lighting the economic and conservation importance of inland rec-
reational fishing, they reveal little about the true scope of national 
catch, harvest, and fishing effort, among other metrics important for 
management. Now, more than ever, in an age of “big data” (Whittier 
et al.,  2016), demand for regional and national integration of rec-
reational inland fisheries data is growing. Cross-state comparisons 
can inform larger-scale research efforts and facilitate coordinated 
management practices (Midway et al., 2016).

Angler (creel) surveys are frequently used by natural resource 
management agencies to collect recreational angling data via on-site 
angler interviews, dockside intercept surveys, and angler counts at 
waterbodies. Interviews with anglers collect information related to 
catch and harvest, angler characteristics, and effort, while angler 
counts are used to estimate fishing pressure (Pollock et al., 1994). 
The information collected via angler interviews can be expanded 
based on estimates of fishing pressure to generate waterbody-
specific estimates of recreational angling effort and catch for an en-
tire survey period. Although information captured by creel surveys 
is often used to address local management concerns, the ability to 
identify patterns among waterbodies at broader spatial and tempo-
ral scales is critical to advancing understanding of these systems. 
Recently, data from creel surveys across the U.S. were made publicly 
available in a database known as the U.S. Inland Creel and Angler 
Survey Catalog (CreelCat; Lynch et al.,  2021; Sievert et al.,  2023; 

Sievert & Lynch, 2023). The CreelCat database provides access to 
detailed information characterizing angler catch and effort at the 
waterbody level. However, because creel survey methods often dif-
fer among surveying agencies, a method capable of integrating sur-
veys is necessary to assess patterns and relationships across regions.

Our objective was to determine if creel surveys of differing de-
signs could be integrated to estimate the relationship between an-
gling catch and effort, along with the external factors driving angling 
effort, across multiple U.S. state jurisdictions. We used a hierarchical 
generalized linear mixed model to estimate the relationship between 
daily recreational fisheries catch and effort at a national scale. Our 
model accounted for survey design by including regional, latent ran-
dom effects and tested the influence of waterbody, socio-economic, 
and ecological covariates on fishing effort. The model was devel-
oped using 2103 creel surveys from 18 states in six of seven U.S. 
National Climate Assessment-designated regions (USGCRP,  2019) 
that represented the largest integration of the U.S. creel surveys to 
date.

2  |  MATERIAL S AND METHODS

2.1  |  Modeling approach

A hierarchical generalized linear mixed modeling approach was de-
veloped to estimate recreational fisheries catch and effort based 
on local waterbody, socio-economic, and ecological covariates. The 
model used catch and effort data and was formulated based on the 
catch-per-unit-effort equation to estimate survey abundance,

where C is catch, q is catchability, E is effort, and N is abundance (see 
review in Maunder & Punt, 2004). Often, catch-per-unit-effort is used 
to estimate waterbody-specific fish abundance based on estimates 
of catch, effort, and catchability. However, given that quantifying 
abundance was not the goal of this study, nor were fish abundance 
estimates available for the catch and effort data that were analyzed, 
Equation 1 was simplified to,

This formulation assumes a linear relationship on a natural log-
scale between catch and effort that is modified by catchability and 
observation error of the catch (�C). Although log(N) was dropped, 
variability contributed by abundance to the relationship between 
catch and effort would be included in �C. To test and account for 
uncertainty in linearity of the relationship between catch and effort 
in original measurement scales, Equation 2 was modified as,

where b = 1 quantified linearity, b < 1 would indicate saturation in 
catch with effort, and b > 1 would indicate a disproportionate increase 
in catch with effort (i.e., facilitation).

(1)C = qEN,

(2)log(C) = log(q) + log(E) + �C .

(3)log(C) = log(q) + blog(E) + �C ,
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The log of waterbody-level fishing effort could be described by a 
linear combination of local covariates,

where �0 is an intercept, � i…n are slopes of relationships with co-
variates i , Xi…n are covariates, and �E is effort observation error. 
This equation was the first level of a hierarchical model, where 
effort estimates were used to estimate catch in the second level 
of the model via Equation 3. Observation errors from Equations 3 
and 4 were both assumed to be independent random variables 
from normal distributions with mean 0. By estimating both log(C) 
and log(E) and propagating uncertainty from both variables into 
final model estimates, the hierarchical model was an errors-in-
variables approach, with uncertainty in response and predictor 
variables (Aljafary et al., 2019; Hilborn & Walters, 1992). This ap-
proach should be less biased for estimating the relationship be-
tween catch and effort than if all variation was attributed to the 
response variable.

The relationship between catch and effort may vary among re-
gions, which was accounted for by estimating b as a latent random 
effect (r),

This parameterization would examine whether the shape of the 
relationship between catch and effort varied as a result of regional 
fish population characteristics and fishing strategies. Regional vari-
ability was incorporated into effort estimates by estimating an inter-
cept as a latent random effect,

This parameterization estimated a variable base level of fishing 
for each region where fishing occurred. This equation could be pa-
rameterized to allow regional variation in effects of covariates, but 
these parameters would likely be more difficult to estimate and could 
lead to erroneous values based on small waterbody sample sizes in 
some regions. The base level of fishing and shape of the relationship 
between catch and effort could also both vary regionally, although 
attempts to model both of these parameters as latent random ef-
fects failed due to convergence problems. Regions examined were 
based on regions defined in the U.S. National Climate Assessment 
(USGCRP, 2019), to represent social and environmental differences 
and to provide a framework for future modeling climate effects on 
recreational fisheries (Table 1; Figure 1). Multiple comparisons test-
ing with Bonferroni corrections was used to quantify differences be-
tween latent regional random effects (Midway et al., 2020).

The Template Model Builder (TMB, Kristensen et al., 2016) pack-
age in R (R Core Team, 2022) was used to evaluate negative loga-
rithms of marginal likelihoods (nll) simultaneously for both models 
(Equations 3–6) and the data, and to evaluate nll gradients. Further, 
the R function nlminb() was used to find maximum likelihood esti-
mates of all parameter values.

2.2  |  Recreational fisheries data

Recreational fisheries catch and effort data from lentic waterbod-
ies (e.g., lakes, ponds, impoundments) were from the CreelCat 
database (Lynch et al.,  2021; Sievert et al.,  2023; Sievert & 
Lynch, 2023). Data consisted of creel survey data collected by state 
agencies throughout the U.S. Creel surveys used angler counts 
and interviews to estimate waterbody-level catch and effort for a 
survey period. Regions were included if they had at least 10 creel 
surveys, which resulted in 18 states being included (see Table 1; 
Figure 1). For simplicity and comparability, catch and effort data 
were aggregated across taxa and catch and effort were divided 
by survey duration to obtain daily estimates. Surveys varied in 
their duration (minimum survey length = 14 days, maximum sur-
vey length = 395 days), timing (e.g., summer, winter), and occurred 
across a range of years (earliest year = 2000, latest year = 2022). 
These temporal characteristics may introduce non-random varia-
tion in catch and effort both within and across surveys, however, 
for the purposes of this study, mean daily catch and effort were 
assumed to be representative across survey periods and years. 
Surveys that targeted a specific species were removed because 
such surveys could bias estimates of total catch and effort on a 
waterbody by anglers. To minimize autocorrelation between the 
samples and the risk of one waterbody characterizing a larger re-
gion, the number of surveys that could be included from a single 
surveyed area was limited to five. If more than five surveys from a 
surveyed area were in the database, the five most recent surveys 
were retained. Furthermore, any surveys conducted prior to the 
year 2000 were removed to minimize overweighting model esti-
mates with states possessing disproportionately long time-series.

2.3  |  Covariate data

To quantify the influence of local, waterbody-level covariates on 
effort, surveys were connected to associated waterbodies as poly-
gons. Most waterbodies could be attributed to polygons within the 
National Hydrography Dataset (NHD; Stachelek, 2019; USGS, 2021). 
In some cases, surveyed waterbodies were not delineated within the 
NHD, and therefore, needed to be created manually. Manual wa-
terbody delineation was accomplished using aerial imagery acquired 
from the ESRI World Imagery Map Service (https://servi​ces.arcgi​
sonli​ne.com/ArcGI​S/rest/servi​ces/World_Image​ry/MapSe​rver; ac-
cessed 2021–2022) to draw a polygon approximating the extent of a 
surveyed waterbody. For some surveys, the extent of a creel survey 
did not match the extent of a waterbody. When the extent of a sur-
vey and waterbody were mismatched, the boundary of the polygon 
was corrected to match the surveyed extent (i.e., polygon repre-
sented a partial waterbody that corresponded to the area included 
in the survey). Some surveys were attributed to multiple waterbod-
ies, such as clusters of ponds (typically found in public parks) or 
chains of lakes in which anglers moved among them. When surveys 
occurred across multiple waterbodies, surveyed waterbodies were 

(4)log(E) = �0 + � i…nXi…n + �E ,

(5)log(C) = log(q) + br log(E) + �C .

(6)log(E) = �0,r + � i…nXi….n + �E.
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combined into multipart polygons to create a single record for multi-
ple waterbodies. Total area of each spatial polygon was calculated to 
use as a covariate in the model. During model testing, relationships 
between waterbody area and fishing effort differed between Great 
Lakes creel surveys and non-Great Lakes creel surveys, which were 
explored using separate � i between Great Lakes surveys and non-
Great Lakes surveys.

Creel surveys were connected to the 2019 American Community 
Survey (ACS) census five-year dataset, which collects demographic 
data throughout the U.S., to examine socio-economic drivers of 
recreational fishing effort (Walker & Herman,  2021). Specific co-
variates were selected based on past evidence of their influence on 
recreational fishing effort (see Adams et al., 1993; Arlinghaus, 2006; 
Arlinghaus et al., 2015; Floyd et al., 2006, 2010). To quantify rela-
tionships between census covariates and recreational fishing effort, 
each survey waterbody was intersected with every overlapping 
county. The mean of census variables (Table 2) was then estimated 
for all overlapping counties for each waterbody to ensure that each 
surveyed waterbody had a single value for each associated census 
variable.

Land cover near waterbodies was also included as a covariate in 
the model. Land cover could affect fishing effort through a variety of 
mechanisms, by influencing the number of anglers (e.g., waterbod-
ies within urban areas) or access to waterbodies (e.g., waterbodies 
surrounded by wetlands). Land cover data were acquired from the 
2019 National Land Cover Database (NLCD) (https://www.mrlc.gov/
data?f%5B0%5D=year%3A2019). The NLCD database provided 
15 land cover classes for areas with CreelCat data: open water, de-
veloped open space, developed low intensity, developed medium 
intensity, developed high intensity, barren land, deciduous forest, 
evergreen forest, mixed forest, shrub-scrub, grasslands-herbaceous, 
pasture-hay, cultivated crops, woody wetlands, and emergent her-
baceous wetlands. The proportion of land cover was calculated for 
each class within buffers around each waterbody. Buffers at two 
scales (100 m and 5000 m) represented how land cover affected fish-
ing effort based on access (100 m) or broader socio-economic sur-
roundings (5000 m). Due to the relatively large number of land cover 
classes, four cumulative land cover types reflected overall hypoth-
eses: development (developed low intensity, developed medium 
intensity, developed high intensity), farms (pasture/hay, cultivated 

TA B L E  1 Number of surveys (Survey N), number of waterbodies (Waterbody N), number of years (year N), average number of surveys per 
year (Annual N), and average number of waterbodies per year (Annual Waterbody N) used to model the relationship between angling catch 
and effort in 18 states within the U.S.

Region State Survey N Waterbody N Year N Annual N
Annual 
waterbody N

Midwest Michigan 623 199 22 28.32 ± 19.58 27.70 ± 19.50

Minnesota 377 209 18 20.94 ± 14.48 18.80 ± 12.90

Wisconsin 414 270 23 18.00 ± 5.27 18.00 ± 5.27

Total 1414 678 23 61.48 ± 20.14 59.20 ± 19.40

Northeast Connecticut 85 40 16 5.31 ± 4.13 4.81 ± 3.29

Massachusetts 3 1 3 1.00 ± 0.00 1.00 ± 0.00

Vermont 12 6 4 3.00 ± 0.82 2.50 ± 1.29

Total 100 47 17 5.88 ± 5.05 5.29 ± 4.27

Northern Great Plains Nebraska 45 14 6 7.50 ± 1.87 7.50 ± 1.87

North Dakota 32 9 11 2.91 ± 1.64 2.18 ± 0.98

South Dakota 77 35 7 11.00 ± 6.08 9.71 ± 5.25

Wyoming 4 4 3 1.33 ± 0.58 1.33 ± 0.58

Total 158 62 17 9.29 ± 9.76 8.29 ± 8.85

Southeast Arkansas 18 11 10 1.80 ± 1.03 1.80 ± 1.03

Florida 157 43 15 10.46 ± 7.06 10.10 ± 6.86

Kentucky 46 28 8 5.75 ± 1.91 5.25 ± 1.75

Tennessee 67 29 4 16.75 ± 0.50 16.80 ± 0.50

South Carolina 4 1 4 1.00 ± 0.00 1.00 ± 0.00

Total 288 112 17 17.18 ± 17.22 16.60 ± 16.90

Southwest Utah 27 23 10 2.70 ± 1.25 2.70 ± 1.25

Southern Great Plains Texas 10 4 8 1.25 ± 0.46 1.25 ± 0.46

Kansas 102 73 17 6.00 ± 4.08 5.88 ± 4.04

Total 112 77 18 6.22 ± 4.57 6.11 ± 4.51

Total 2103 999 23 91.43 ± 39.23 87.50 ± 38.50

Note: Mean ± standard deviation are shown for numbers of surveys per year and numbers of waterbodies surveyed per year.
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crops), forests (deciduous forest, evergreen forest, mixed forest), 
and wetlands (woody wetlands, emergent herbaceous wetlands). 
Distance from each waterbody boundary to the nearest primary 
road was used as a proxy for waterbody accessibility. The dataset 
for nearest main road was from the 2016 U.S. Census Tiger shape-
files dataset (https://www.census.gov/geogr​aphie​s/mappi​ng-files/​
time-serie​s/geo/tiger​-line-file.html).

2.4  |  Model selection

A stepwise model selection framework was used to identify the 
most parsimonious model. The framework was conducted in two 
steps, where model selection was based on Akaike information cri-
terion (AIC), Bayesian information criterion (BIC), and model residu-
als to identify the most informative model for the observed data. BIC 

F I G U R E  1 Map of states and waterbodies where creel surveys were used to model the relationship between angling catch and effort in 
18 states within the U.S. Colors represent regions defined by the U.S. National Climate Assessment. States with faded colors had no data, 
while states with bright colors had data. Waterbodies with creel survey data are shown in black.

TA B L E  2 Waterbody and socio-economic covariates used to model the relationship between angling catch and effort in 18 states within 
the U.S.

Symbol Name Description Data source Census code

A Waterbody area (km2) Surveyed waterbody area NHD

PS Population size Total human population ACS Census B01003_001

MI Median income Median income in the past 12 months ACS Census B06011_001

MA Median age Median age ACS Census B01002_001

MH Median household size Average household size of occupied housing units ACS Census B25010_001

DS Distance to road Distance to nearest primary road US Census Tiger

DV Development Developed low, medium, and high intensity NLCD

FM Farms Pasture/hay and cultivated crops NLCD

FT Forests Deciduous, evergreen, and mixed forest NLCD

WT Wetlands Woody and emergent herbaceous wetlands NLCD
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measured goodness-of-fit with specific emphasis on model simplic-
ity, while AIC was a measure of prediction accuracy (Sober, 2002). A 
conservative cut-off of 10 AIC and BIC points was used to determine 
if the model criterion indicated improved fit (Richards, 2005). The 
first step sought to identify if including β0,r or br improved model 
fit. The second step used the best model from step one, in forward 
selection with 10 covariates (Table 2), with previously defined hy-
potheses (Section  2.3) to determine which covariates were most 
informative.

3  |  RESULTS

The final dataset included 2103 surveys of 999 waterbodies from 18 
states in six of seven U.S. regions from 2000 to 2022 (Table 1). The 
number of surveys and waterbodies surveyed differed among years 
(mean = 91.43 surveys per year, SD = 39.23; mean = 87.50 waterbod-
ies per year, SD = 38.50). Survey duration varied, with 25 surveys 
of less than 30 days, 236 surveys of 31–90 days, 579 surveys of 90–
180 days, 1157 surveys of 180–360 days, and 106 surveys longer 
than 360 days (Figure S1). The Midwest was the most surveyed re-
gion, with 1414 surveys from 678 waterbodies within three states 
across 23 years, while the Southwest was the least surveyed region, 
with 27 surveys from 23 waterbodies in one state (Utah) across 
10 years. Surveyed waterbody areas ranged from 0.002 to 6579 km2, 
with a high regional mean of 315.3 km2 in the Midwest and a low 
regional mean of 20.4 km2 in the Northeast. In the Midwest, 34.2% 
of surveys were in the Great Lakes.

The best-fitting model without covariates was the model with 
the effort intercept (�0,r) estimated as a latent random effect (Effort 
intercept model; Table 3). The second-best fitting model estimated 
the linearity term as a latent random effect, b (Linearity-term model; 
ΔAIC = 281, ΔBIC = 280). Improved model fit for the effort intercept 
model, indicated by better fitting residuals by region (Figures S2–S4 
and S5–S7), suggested that regional differences in the base level 
of fishing effort were more important than regional differences in 
the shape of the relationship between catch and effort. The Effort 

intercept model estimated a linearity term (b) that did not differ sig-
nificantly from 1 (b = 0.87, 95% CI = 0.70–1.04).

The best-fitting model with covariates (Model C24) included 
log(waterbody area), with separate slopes for Great Lakes and 
non-Great Lakes surveys, median household age, and distance 
from the nearest primary road (Table  4). Model C24 had a sub-
stantially lower AIC and BIC (Table S1) and residuals than all other 
models (Figures  S8–S11). Log(waterbody area) was positively re-
lated to fishing effort on non-Great Lakes waterbodies (β = 0.537, 
95% CI = 0.515–0.559) and Great Lakes waterbodies (β = 0.123, 
95% CI = 0.107–0.139; Figure  2), whereas median household age 
(β = −0.040, 95% CI = −0.046 to −0.034) and distance to primary 
roads (β = −0.0023, 95% CI = −0.0018 to −0.0028) were both nega-
tively related to fishing effort.

The best-fitting model with covariates (Model C24) also fit the 
relationship between log(Catch numbers per day) and log(Effort 
hours per day) well, with an estimate of b that was significantly less 
than 1 (b = 0.927, 95% CI = 0.862–0.992; Figure 3), which indicated 
that catch saturated with increasing effort (Figure  4). The largest 
residuals from the relationship were for surveys with fewer effort 
hours per day that resulted in fewer catches than expected. The la-
tent random regional effects for β also indicated that the Northeast 
(β = 5.37, 95% CI = 4.88–5.86) was the only region that differed sig-
nificantly from another region (the Northern Great Plains, β = 6.37, 
95% CI = 5.90–6.83; Figure 5).

TA B L E  3 Comparison of models without covariates used to 
model the relationship between angling catch and effort in 18 
states within the U.S. using Akaike information criterion (AIC) and 
Bayesian information criterion (BIC).

Model name β0 b k ΔAIC ΔBIC

Effort intercept Latent Fixed 4 0 0

Linearity term Fixed Latent 4 281 280

Basic Fixed Fixed 5 394 400

Note: β0 and b columns indicate whether those parameters were 
estimated a fixed effect or as a latent random effect, k is the number 
of fixed effects model parameters and Δ represents the difference in 
criterion score for a particular model from the model with the lowest 
criterion score. Table ordered from smallest ΔAIC to largest. Bolded 
text indicates the best fitting model (i.e., lowest AIC and BIC scores). 
Basic model refers to the model when no latent random effects were 
included.

TA B L E  4 Comparison of models with covariates used to model 
the relationship between angling catch and effort in 18 states 
within the U.S. using Akaike information criterion (AIC) and 
Bayesian information criterion (BIC).

Model name X1 X2 X3 k ΔAIC ΔBIC

Effort 
intercept

4 2317 2295

C1 A 5 1426 1409

C2 AGL 6 347 336

C6 MA 5 2135 2118

C15 AGL MA 7 76 71

C24 AGL MA DS 8 0 0

C22 AGL MA MH 8 65 66

C21 AGL MA PS 8 78 78

C26 AGL MA FM 8 67 67

Note: All models use the same formulation as the Effort intercept 
model from Table 3. Xi represents the covariate included (see Table 2 
for abbreviations; AGL indicates a model with separate β estimates for 
waterbody area between Great Lakes and non-Great Lakes surveys), k 
is the number of fixed effects model parameters and Δ represents the 
difference in criterion score for a particular model from the model with 
the lowest criterion score. Bolded text indicates the best fitting model 
(i.e., lowest AIC and BIC scores). Results with land cover are only shown 
for the 100 m buffer because results were not substantially different 
with the 5000 m buffer. Models shown are meant to represent a range 
of model complexities and the magnitude of associated model criterion 
scores. Full results shown in Table S1.
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4  |  DISCUSSION

Despite differing creel survey methods (Pollock et al., 1994) and a 
wide geographic scale, we found that estimated catch did not in-
crease linearly with fishing effort, but rather, catch per unit of ef-
fort declined as fishing effort increased. Recreational angling can 
substantially impact fish stocks and supporting ecosystems (Cooke 
& Cowx,  2004; Schafft et al.,  2021), so assessing the magnitude 

of fishing effort and catch is important for developing sustainable 
fisheries management plans (FAO, 2012). However, the magnitude 
of fishing effort is simpler to quantify than catch, especially given 
recent technological advances that permit remote and automated 
angler counts (Dainys et al.,  2022; van Poorten et al.,  2015). We 
found that catch per unit of effort decreased as effort increased, like 
other studies (Aljafary et al., 2019). Therefore, catch-effort models 
that assume a linear relationship between macro-scale recreational 

F I G U R E  2 Relationships between log-transformed effort hours per day and waterbody area (non-Great Lakes and Great Lakes) median 
age, and distance to road, from model C24 in 18 states within the United States. Points represent data, black lines represent modeled 
relationships, and light blue polygons represent 95% confidence intervals around those estimates. Due to the larger number of samples 
from non-Great Lakes, represented data and model estimates for distance to road, median age, and log waterbody area do not include 
Great Lakes data.
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fishing effort and catch would overestimate catch, except when ef-
fort is small. Although local recreational fisheries can be dynamic 
due to local environmental and social conditions (Dundas & von 
Haefen, 2020; Fedler & Ditton, 1994; Midway et al., 2021), we found 
that when viewed across large scales, each hour of recreational fish-
ing effort produced a relatively consistent catch [e.g., 1 h of fish-
ing after 100 h of effort produces a catch of approximately 3.32 
fish (95% CI = 1.67–6.54) and 2.82 fish (95% CI = 1.22–6.41) after 
1000 hours of effort].

The non-linear relationship between recreational fishing effort 
and catch indicated that angling efficiency decreased with increas-
ing angling effort, perhaps because of fish population characteristics 
or fishing effort dynamics (Harley et al., 2001). Catch-per-unit-effort 
is ideally proportional to fish density or abundance (Maunder & 
Punt, 2004), although many factors can invalidate this assumption 
(see Harley et al.,  2001). Nonetheless, fish abundance estimates 
were not available for catch and effort data that we analyzed, and 
we assumed that the effect of fish abundance would be included in 
observation error. Alternatively, if the effect of fish abundance was 
not fully reflected in observation error (i.e., its effect is not normally 
distributed around zero), the shape of the relationship we found be-
tween catch and effort (e.g., increased effort reduces catch per unit 
of effort) may not have been accurate. Competition among anglers 
can cause catch per unit of effort to decline with increasing effort 
(Aljafary et al.,  2019), usually when fish aggregate in ideal habitat 
that fishers target (Dassow et al.,  2020). Increased fishing effort 
can cause congestion in such locations, and thereby lead fishers to 
target other locations where catchability is lower (Hunt et al., 2019; 

Parkinson et al., 2004). Finally, although the effect is likely not large 
enough to fully explain the pattern we observed, fish can avoid fish-
ing gear after capture (Lennox et al., 2017), causing catch rates to 
decline in response to learning at high levels of effort in catch and 
release fisheries.

We found that fishing effort varied among regions and was driven 
by local socio-ecological covariates, perhaps in response to local 
culture, demographics, and urbanization (Arlinghaus et al.,  2012, 
2021; Fedler & Ditton,  2001). We found significant differences in 
angling effort among regions, with the lowest fishing effort in the 
Northeast. This finding is similar to previous analyses that showed 
Connecticut and Massachusetts had below average resident and 
non-resident angling rates (Adams et al., 1993). It is also possible that 
inland fishing pressure was lowest in the Northeast and Southeast 
because most surveys in those regions were from states along the 
coast, where residents also fished recreationally in coastal marine 
ecosystems.

Waterbody size was exponentially related to fishing effort in our 
study, similar to many other studies that found fishing effort was 
positively related to waterbody size (Hunt, 2005; Kane et al., 2022). 
The relationship between fishing effort and waterbody size may 
be the result of angler preference. For example, large waterbodies 
may yield higher catches because of more productive (Downing 
& Plante,  1993) and diverse fish populations (Amarasinghe & 
Welcomme, 2002), while simultaneously being less congested due 
to larger fishing area (Hunt et al., 2019). In contrast, recent research 

F I G U R E  3 Relationship between log-transformed effort hours 
and catch numbers per day (Model C24) in 18 states within the 
United States. Gray dots represent individual data points, the black 
line represents the predicted relationship, and the blue polygon 
represents 95% confidence intervals around the relationship.

F I G U R E  4 Relationship between effort hours and catch 
numbers per day (Model C24) in 18 states within the United States. 
Gray dots represent individual data points, the black line represents 
the predicted relationship, the dashed red line represents a linear 
relationship (i.e., b = 1), and the blue polygon represents 95% 
confidence intervals around the relationship. The x and y-axis 
ranges were reduced to include most of the data.
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has indicated that smaller waterbodies can receive greater angler ef-
fort (h/ha) and biomass stocked (kg/ha) than larger waterbodies per 
unit area (Kaemingk et al., 2022). We also found that the relationship 
between waterbody area and fishing effort differed between Great 
Lakes and other lakes, perhaps because Great Lakes anglers tend 
to target a relatively small number of taxa (Melstrom & Lupi, 2013). 
These highly targeted species (e.g., walleye Sander vitreus, Chinook 
salmon Oncorhynchus tshawytscha) tend to be spatially restricted 
(Dippold et al.,  2020; Simpson et al.,  2016), so the ratio between 
fished area and total area may be smaller than in non-Great Lakes 
fisheries. Further, accessibility to Great Lakes fisheries is more lim-
ited than non-Great Lakes waterbodies because of fewer available 
shore fishing opportunities or boat launches than other waterbodies. 
Finally, the different effect of waterbody area for Great Lakes creel 
surveys may also be related to differences in resources needed to 
engage in off-shore angling on the Great Lakes, where larger boats 
and specialized expensive gear is needed (Tanner & Tody, 2002).

We found that distance to primary road and median age were 
negatively related to recreational fishing effort, as we expected, 
because access and geographic proximity positively influence the 
likelihood of recreational fishing engagement (Arlinghaus,  2006; 
Hunt et al., 2019), along with participation in outdoor recreational 
activities (Hendee, 1969). Prior observations of a similar relationship 
between fishing effort and median age were hypothesized to be 
driven by reduced physical ability of old-aged anglers to spend time 
fishing (Walsh et al.,  1989). In contrast, the relationship between 
age and fishing effort may not be straightforward, because life-style 
changes associated with aging could positively or negatively affect 
recreational behavior (see Arlinghaus, 2006).

Creel surveys are often used to gather information related to 
waterbody-specific management concerns, so the timing and lo-
cation of creel surveys are often non-random (Lynch et al., 2021). 

Targeting specific waterbodies, possibly with unique management 
challenges, can bias estimates of recreational fishing effort and 
catch in relation to their applicability to other random waterbodies 
elsewhere. Furthermore, differences in sampling protocols (e.g., fre-
quency of interviews, timing of surveys) likely affected our model 
estimates, which we attempted to account for as regional latent ran-
dom effects, although other sampling effects would be worth exam-
ining at smaller spatial scales. Given the hierarchical structure of our 
approach, with uncertainty around both catch and effort, our esti-
mates could be biased (Aljafary et al., 2019). If the approach we used 
were applied to smaller scale analyses, different relationships be-
tween catch and effort could be explored, where catchability may be 
more substantially impacted by target species (Mosley et al., 2022), 
angler skills and gear (Heermann et al.,  2013), or by interference 
among anglers (Lewin et al., 2006).

The availability of spatial data for each CreelCat survey allowed 
integration with other large-scale spatiotemporal datasets, which 
also provides an avenue for further research on socio-ecological 
system dynamics outside the scope of what is typically collected by 
creel surveys (e.g., as discussed in Nieman et al., 2021). Although we 
found no evidence of relationships between fishing effort and land 
cover data, such relationships may be evident at finer spatial scales 
(e.g., regional, state). Furthermore, similar approaches could be ex-
tended to include many other types of spatially referenced data (e.g., 
climate projections) to understand the influence of many drivers on 
recreational fisheries dynamics. Integrating climate data could help 
to understand how climate change influences recreational fishers. 
For example, climate change will likely affect fish habitats and pop-
ulations, environmental conditions that directly affect fishing effort, 
and mitigation and adaptation policies that could affect fishing ef-
fort (e.g., fuel prices; Hunt et al., 2016). Additionally, heat stress con-
tributes to higher rates of post-release mortality (Gale et al., 2013), 

F I G U R E  5 Latent effect of region 
of creel surveys on logarithmically 
transformed effort hours per day (Model 
C24) in 18 states within the United States. 
Points represent the model estimate of 
the effect, lines represent Bonferroni 
corrected 95% confidence interval 
around estimates, and the dashed red line 
represents zero.
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so integrated climate and creel data could be used to identify fisher-
ies in need of supplemental management policies to protect against 
synergistic effects of high fishing effort and warming temperatures 
(Hunt et al., 2016).

Limited inland fishery data pose a challenge to creating effective, 
sustainable management regimes. A modeling approach with the pre-
dictive power to estimate inland recreational fishing catch and effort 
across local, regional, and national levels could be a powerful tool 
for informing management efforts, especially in data-poor scenarios, 
by leveraging regional angling similarities and socio-economic and 
ecological covariates to predict catch or effort in waterbodies with 
limited data. Currently, global inland recreational fisheries tend to be 
data-poor due to monitoring challenges associated with their sea-
sonal and diverse nature (FAO, 2010). Poorly informed management 
regimes may result in adverse life history effects, high mortality 
rates, and even fishery collapse due to overfishing (Allan et al., 2005; 
Embke et al., 2019; Lewin et al., 2006; Post et al., 2002; Robertson 
et al., 2018). Herein, we used a framework for integrating creel sur-
vey data to assess the relationship between inland recreational catch 
and effort across multiple spatial scales. Such a tool could be used to 
inform data-poor regions or waterbodies, compare angling catch and 
effort across broad spatial scales, and inform management actions 
by predicting changes in catch and effort via the effects of shifting 
demographics and landscapes.
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