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Abstract
Long-term sampling of fisheries data is an important source of information for making inferences about the

temporal dynamics of populations that support ecologically and economically important fisheries. For example,
time series of catch-per-effort data are often examined for the presence of long-term trends. However, it is also of
interest to know whether certain sampled locations are exhibiting temporal patterns that deviate from the overall
pattern exhibited across all sampled locations. Patterns at these “unusual” sites may be the result of site-specific
abiotic (e.g., habitat) or biotic (e.g., the presence of an invasive species) factors that cause these sites to respond
differently to natural or anthropogenic drivers of population dynamics or to management actions. We present a
Bayesian model selection approach that allows for detection of unique sites—locations that display temporal
patterns with documentable inconsistencies relative to the overall global average temporal pattern. We applied
this modeling approach to long-term gill-net data collected from a fixed-site, standardized sampling program for
Yellow Perch Perca flavescens in Oneida Lake, New York, but the approach is also relevant to shorter time series
data. We used this approach to identify six sites with distinct temporal patterns that differed from the lakewide
trend, and we describe the magnitude of the difference between these patterns and the lakewide average trend.
Detection of unique sites may be informative for management decisions related to prioritizing rehabilitation or
restoration efforts, stocking, or determining fishable areas and for further understanding changes in ecosystem
dynamics.
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Fisheries management typically relies on long-term data,
such as those generated by fishery-independent surveys, to
produce information about status and trends in fish stocks.
For example, data from monitoring programs are frequently
used to evaluate hypotheses about fish abundance and distri-
bution, gear selectivity, and relationships with predictor vari-
ables of interest (Hamley and Regier 1973; Anderson 1998).
Because many management decisions (Detar et al. 2014) as
well as biotic (e.g., introduced species; Pine et al. 2005) and
abiotic (e.g., climate change; Wenger et al. 2011) drivers of
fish populations are often expected to produce changes in fish
abundance over time, fishery-independent surveys are com-
monly used to detect temporal trends (Wagner et al. 2013). It
is also common for management actions and research to span
across many sites, with “sites” being defined as sampling
locations within a single aquatic system (e.g., sites within a
lake) or as individual lakes or stream systems within a larger
geographic region. Regional management actions may include
setting statewide or regionwide minimum length limits or bag
limits. For example, the state of Wisconsin manages Walleyes
Sander vitreus and the province of Ontario manages Lake
Trout Salvelinus namaycush across a large number of inland
lakes (Shuter et al. 1998; Beard et al. 2003).

In the context of trend detection, individual sampling sites
may exhibit “unusual” or unique trends—those that quantita-
tively differ from the overall trend across the population of
sites being monitored. Identification of sites that exhibit unu-
sual trends is important in order to (1) potentially prioritize

management efforts to unusual sites, if the unusual nature of
the trend is of concern or interest to management (e.g., declin-
ing abundance of an endangered species or important fishery);
(2) elucidate why management actions might not be having the
intended effects on certain systems (e.g., is there something
unique about the habitat at sites that are exhibiting unusual
trends?); and (3) understand ecological drivers of temporal
dynamics that could be used for projecting abundance at
specific sites under future environmental scenarios.

Most aquatic systems exhibit spatial heterogeneity, and
conservation and natural resource management has tradition-
ally attempted to understand distinct spatial characteristics that
might aid in resource management (e.g., source–sink
dynamics). Unique spatial units have served as a basis for
determining locations of marine reserves (e.g., Hooker et al.
1999; Airamé et al. 2003) or otherwise protecting spawning
aggregations (Murawski et al. 2000) and also for mitigating
the negative impacts of climate change on species distribu-
tions through landscape design and manipulation (Pearson and
Dawson 2005). In each of these examples of spatially explicit
management approaches, it was imperative to identify unique
habitats that were most suitable in space and time as the
targets of a management action. Because ecosystem dynamics
are constantly changing, often in nonlinear ways, identifying
unique patterns at varying spatial scales can be used as one
tool in the decision making framework for effective, feasible,
and timely management.

Although a temporal trend is often defined as a linear (mono-
tonic) change over time (Wagner et al. 2013), this definition of
temporal change may not always be sufficient to capture the
nonlinear dynamics of fish population responses to management
or environmental drivers (Shelton and Mangel 2011). Therefore,
this study focuses on detecting temporal “patterns,” which sum-
marize year-to-year changes in dynamics that are often critically
important to understanding systems but that may not be ade-
quately quantified when estimating long-term linear trends. For
instance, a site may exhibit important patterns over time (e.g.,
some years with very high or very low catches) but without
showing a significant long-term temporal trend. In the present
study, a Bayesian model choice approach modified from Li et al.
(2012) was applied to gill-net data describing the catch of
Yellow Perch Perca flavescens in Oneida Lake, New York
(Rudstam and Jackson 2015). Our objective was to identify
sample sites that exhibited unusual trends in comparison with
the temporal pattern described by all available data. We also
attempted to understand why sites that were identified as having
unusual trends showed temporal patterns that deviated from the
overall trend observed in the lake. Although we applied the
approach to a long-term data set, it is also possible to use
Bayesian model choice on much shorter time series (Li et al.
2012). Identification of unusual temporal patterns at varying
spatial scales could help focus efforts to elucidate the mechan-
isms or underlying causes that influence the departure from a
common temporal pattern.

TABLE 1. Middepth (m) of gill-net sets and total catch of Yellow Perch at 15
fixed-location gill-net sites in Oneida Lake, New York, 1957–2010. Sites are
listed in ascending order based on the time of year in which they were
sampled. Site number is listed for referencing in Figures 1–3.

Site name
Site

number
Depth
(m)

Yellow Perch
catch

Phillips Point 1 18 4,287
Dakin Shoal 2 14 4,081
Shackelton
Point

3 26 6,003

Buoy 125 4 9 6,473
Damon Point 5 28 6,374
Dutchman
Island

6 17 7,773

Buoy 129 7 31 3,200
Buoy 113 8 18 5,083
Cleveland 9 19 4,801
Jewell 10 26 4,024
Buoy 133 11 14 2,923
Lewis Point 12 19 1,846
Dunham Island 13 21 1,215
Willard Island 14 20 839
Bushnell Point 15 22 998
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METHODS

Study Site and Data Description
Oneida Lake, with a surface area of 20,700 ha and amean depth

of 6.8 m, is the largest lake that is located entirely within the
borders of NewYork State. The lake has a long history of fisheries
research and sampling and is the site of a fishery-independent gill-
net sampling program that dates back to the 1950s. Currently,
multifilament gill nets are set at 15 fixed locations, which are
sampled in a standardized sequence from June to September
(Table 1; Figure 1). The survey gear comprises two multimesh
gangs, which are set on bottom and fished overnight for approxi-
mately 12 h, including dawn and dusk. For each gang, mesh size
ranges from 38 to 102 mm (stretch mesh) in 13-mm intervals
across six panels. Yellow Perch typically comprise the majority of
the catch in annual gill-net sampling (Irwin et al. 2016). We
focused on Yellow Perch for this study because they are a target
species for a long-term monitoring program and because research
and management interest in their spatiotemporal population
dynamics continues to the present. Gill-net catch data were com-
bined across mesh sizes, resulting in 15 observations for each
survey year. We used 53 years of gill-net catch data from 1957
to 2010 (data were not available for 1974), resulting in 795
observations.

Model Description
Trend modeling.—We employed a Bayesian hierarchical

modeling framework and a Bayesian model choice procedure

to determine the probability that the temporal pattern for a
given site deviated from a common trend, which was
estimated from data across all sites. We followed a model
structure similar to that of Li et al. (2012), who used the
approach for detecting unusual temporal patterns in human
mortality, by fitting two alternative models: one that assumed
a common trend across all sites (model 1); and one that
estimated trends independently for each site (model 2). We
assumed a lognormal probability distribution for our response
variable: yi,t = loge(catchi,t + 1). A constant of 1.0 was added
to the raw catch data prior to log transformation to
accommodate four observations with zero catch. The two
alternate models were

yi;t ¼ Norm α0 þ ηi þ γt; σ
2
1

� �
model 1

Norm ϕi þ νi;t; σ22
� �

model 2

�
:

Model 1 assumes that the temporal trend (γt) is the same
for all i sites, where α0 is the overall intercept (a diffuse
normal prior, Norm[0, 1,000], was used for α0); ηi is a
random site effect (i.e., an adjustment to the overall inter-
cept, allowing each site to differ in average loge[catch];

ηi,Norm 0; σ2η
h i

; a diffuse uniform prior, Unif[0, 10], was

used for ση); and γt is a random year effect. A Gaussian
random walk prior of order 1 (RW[1]) was used for the
temporal random effect. As outlined by Li et al. (2012),
we used a one-dimensional conditional autoregressive

FIGURE 1. Fifteen fixed-location gill-net sites sampled in Oneida Lake, New York, from 1957 to 2010 (data were not available for 1974). Site numbers
correspond to the locations listed in Table 1.
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(CAR) model for the temporal RW(1), where
γ1:T ,CARðQ; σ2γÞ and Q is a matrix that defines the tem-

poral neighborhood structure. A diffuse uniform prior,
Unif(0, 10), was used for σγ. Model 2 estimates the tem-
poral trends for each site independently, where ϕi is the
site-specific intercept (in this case, a diffuse normal prior,
ϕi ~ Norm[0, 1,000], was used for each ϕi in contrast to
the partial pooling allowed in model 1 for ηi); and νi,t is
the site-specific trend. An RW(1) structure similar to that
used in model 1 was assumed for νi,t, where

νi;1:T ,CAR Q; σ2i;ν
� �

and logðσ2i;vÞ,Normðμσ2ν ;ω2
νÞ. A dif-

fuse normal prior, Norm(0, 1,000), was used for μσ2ν (the

mean log site-specific variance); and a diffuse uniform
prior, Unif(0, 10), was used for ων. Residual variances
for models 1 and 2 were σ21 and σ22, respectively (diffuse
uniform priors, Unif[0, 10], were used for σ1 and σ2).

Model selection used a Bayesian formulation. For each site,
a model indicator zi was introduced to select estimates from
either model 1 (zi = 1) or model 2 (zi = 0; Li et al. 2012). The
posterior frequency of selecting the common trend model was
obtained by fi ¼ P zi ¼ 1jdatað Þ, where a small value of fi
indicates that the trend for site i is unlikely to follow the
common trend (i.e., lower values of fi suggest that a site is
unusual). Model choice occurred by fitting each model sepa-
rately and allowing a mixture model with indicator zi to
compare the model fits at each Markov chain–Monte Carlo
iteration, which selected either model 1 or model 2. We
assumed a Bernoulli(0.95) prior for zi, which reflects the fact
that we anticipated relatively few unusual trends a priori;
however, we also investigated the sensitivity of our results to
this prior by performing the analysis with zi ~ Bernoulli(0.5).
We considered sites with fi-values of 0.05 or less to be “unu-
sual” (note that 0.05 here is not the same as an α-value used in
a null hypothesis framework). See the Supplement available in
the online version of this article for model code.

All models were fitted by using WinBUGS (Lunn et al.
2000) executed from within R (R Development Core Team
2015). WinBUGS was used due to the availability of the “car.
normal” function for implementing the RW(1) prior. Three
parallel chains, each with 70,000 iterations, were run with
different initial values to generate 210,000 samples from the
posterior distributions. The first 40,000 samples of each chain
were discarded and every third sample was retained, resulting in
a total of 30,000 samples (i.e., 10,000 samples/chain). To assess
convergence, we examined the scale reduction factor (a con-
vergence statistic) for each parameter as well as examining
trace plots and posterior distribution plots.

Relating fi to a site covariate.—We were interested in
relating the fi value (i.e., the probability that a site would
follow the common trend) to site-specific covariates. Thus,
we fitted a beta regression model to relate fi to (1) site depth,
calculated as the midpoint of the water column depth for each

gill-net set, (2) the order in which each site was visited during
each year, and (3) the total catch over the time series for each
site. We chose site depth because potential distributional shifts
in Yellow Perch could change the proportion of the population
that inhabits shallow or nearshore areas. In general, water
column depth is an important habitat component, and this
information was available for each Oneida Lake site. Site
visit order was examined because sites were sampled in the
same order each year, meaning that the potential existed for a
seasonality effect to interfere with what we would otherwise
interpret as actual spatial differences. Finally, total catch was
examined simply to address the question of whether sites with
relatively high or relatively low catches were also those
identified as unique sites.

In beta regression, the response variable must be greater
than 0 and less than 1; therefore, we replaced fi with
fi � n� 1ð Þ þ 0:5½ �=n, where n is the number of sites
(Smithson and Verkuilen 2006). We used a logit link to relate
the conditional mean to the predictor variable. Thus, we
assumed that fi followed a beta distribution with a mean
modeled as a function of site depth, site visit order, or total
catch. Diffuse normal priors (Norm[0, 1,000]) were used for
the slope and intercept parameters. We fitted the models by
using JAGS (Plummer 2013) executed from within R. Three
parallel chains, each with 50,000 iterations, were run with
different initial values to generate 150,000 samples from the
posterior distributions. The first 30,000 samples of each chain
were discarded and every third sample was retained, resulting
in a total of 20,000 samples. We examined the scale reduction
factor for each parameter, trace plots, and posterior distribu-
tion plots to assess convergence. All estimates are reported as
posterior means and associated 95% credible intervals (CIs).

RESULTS
On average, gill-net catches of Yellow Perch declined sub-

stantially over time in Oneida Lake (Table 1; Figure 2). However,
6 of the 15 sampled locations displayed temporal patterns that we
judged to be inconsistent (i.e., site-specific f ≤ 0.05) with the
overall temporal pattern suggested by the aggregated data. Three
sites (sites 1, 2, and 4) generally produced catches that were (1)
higher than the common model predictions for early years of the
time series and (2) lower than the common model predictions for
recent years. Thus, 50% of the sites identified as unusual dis-
played a period of more recent decline than predicted from the
common model. In contrast, sites 8 and 9 displayed relatively
consistent and high variability in catches throughout the entire
surveyed time period, with relatively little temporal pattern.
Therefore, those two sites were unusual for their lack of a
temporal decline. Lastly, site 15 showed a decline over time,
which appeared somewhat consistent with the common pattern,
but it produced an unusual number of low catches that were
concentrated in the middle of the time series. During the most
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recent decades, catches at site 15 returned to the scale of obser-
vations from the beginning of the time series (i.e., were often
large relative to the low catches observed during the 1970s and
1980s). Overall, the magnitude of deviation between site-specific
temporal patterns and the common temporal pattern varied across
sites, as would be expected based upon f-values (Figure 3).

Once the f-values were obtained for each site, we used beta
regression to relate those values against site-specific charac-
teristics so as to further illustrate how f-values might be useful
for managers in attempting to evaluate spatial differences. A
modest relationship was found between the posterior probabil-
ity of adhering to the common trend and a measure of water
column depth at the site (Figure 4). The relationship between
the probability of a site having a trend similar to that of the
common trend was positively related to the middepth of the
gill-net set (estimated slope = 0.74; 95% CI = 0.35, 1.4);
shallower sites tended to depart from the common pattern.
No relationship was found for site visit order (estimated
slope = 0.31; 95% CI = –0.36, 1.01) or total catch (estimated
slope = –0.12; 95% CI = –0.86, 0.59), suggesting that

differences in catch among sites were not having an undue
influence on f-value determination. The selected value for the
Bernoulli prior for zi had little apparent effect on the results.
Changing the prior from 0.95 to 0.50 did not affect the sites
that were identified as unusual (f-values ≤ 0.05;
Supplementary Figure S.1).

DISCUSSION
Using a Bayesian model choice procedure, we were able to

identify six gill-net sites in Oneida Lake that displayed unique
long-term temporal dynamics in Yellow Perch catches, in
contrast with nine sites that exhibited a common temporal
pattern when considered across the nearly 60-year time series.
We also quantified the difference between common and unique
trends in order to describe the magnitude of differences from
an average temporal pattern for sites that were identified as
unusual. Because the data considered here were collected over
many decades, we expected that minor or few annual devia-
tions from model 1 would not carry much weight in model

FIGURE 2. Temporal trends in loge-transformed Yellow Perch catch (catch per effort [CPE] = number per gill-net set; solid circles) at 15 sites in Oneida Lake,
New York, 1957–2010. Posterior mean fitted lines are from two models: one that assumes a common trend for all sites (dashed line; gray-shaded area = 95%
credible region); and one that estimates a unique trend for each site (solid line; blue-shaded area = 95% credible region). The number in parentheses on each
panel is the site number (defined in Table 1). The f-value refers to the probability that a site will follow the common trend; a small f-value indicates that the trend
for a specific site is unlikely to follow the common trend.
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selection and that substantial evidence would be needed to
classify a site as unusual. However, Yellow Perch in Oneida
Lake are generally considered to be a distributed single stock
(Forney 1974; Clady 1976; Irwin et al. 2009), although some
homing to spawning locations may occur (Clady 1977). Thus,
for this case study example, any interpretation of unique site-
specific temporal patterns as representing dynamics of truly
unique subpopulations that persist over time should be made
with caution. Rather, we interpret the detection of unusual
sites as likely representing intra-annual spatial variability,
some of which may be changing over time in relation to
habitat alterations and other ecological changes that occurred
in Oneida Lake during the sampling period (Mayer et al. 2001;
Zhu et al. 2006). For instance, we found some evidence that
water column depth partially explained the probability that a
site would display a unique temporal pattern, and this relation-
ship was stronger than that observed for either sampling order
or a site’s cumulative catch. Furthermore, half of the unique
sites recently displayed a steeper decline in catch than was
observed with the common model. In this regard, the avail-
ability of certain habitat types (e.g., forage or refuge areas)

and the preference of Yellow Perch for those habitat types may
be shifting over time.

The sensitivity of the Yellow Perch’s spatial distribution
within Oneida Lake to habitat and food web changes remains
an area worthy of further study. Our results were not sensitive
to a substantial change in the Bernoulli prior on zi, suggesting
that the sites we identified as unusual were not sensitive to our
prior belief regarding the proportion of sites that would be
considered unusual. In a broader sense, the methodological
approach described here could be informative to natural
resource managers who are interested in identifying both the
location and the magnitude of spatial differences in temporal
patterns. However, our analysis took advantage of a standar-
dized fishery-independent time series, so depending on the
source of catch-per-effort time series data (e.g., commercial
catch data), additional steps may be required to develop a
standardized index of abundance that accounts for factors
such as differences in boat size (Deroba and Bence 2009).

In Oneida Lake and elsewhere, Yellow Perch have been
noted to be variable in abundance, particularly at early ages
(Forney 1971). Yellow Perch are the primary forage of many

FIGURE 3. Difference between the estimated posterior mean site-specific trend and the estimated common trend (solid line) in loge-transformed Yellow Perch
catch at 15 sites in Oneida Lake. The shaded area is the 95% credible interval for the difference between estimated trends. The number in parentheses is the site
number (defined in Table 1). The f-value refers to the probability that a site will follow the common trend; a small f-value indicates that the trend for a specific
site is unlikely to follow the common trend.
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piscivorous species, and they exhibit strong predator–prey
dynamics with Walleyes (Rudstam et al. 1996). The common
temporal pattern we detected for Yellow Perch was one of
fluctuating catches (but no substantial overall trend) until the
late 1980s, after which the Yellow Perch catch continued to be
variable but trended lower by the end of the data set. In recent
decades, White Perch Morone americana, Gizzard Shad
Dorosoma cepedianum, zebra mussels Dreissena polymorpha,
and double-crested cormorants Phalacrocorax auritus have all
been investigated as potential drivers of ecosystem change in
Oneida Lake. Irwin et al. (2016) found lower Yellow Perch

catches during the years after zebra mussels were established;
however, other studies also noted the potential for substantial
impacts of predation on Yellow Perch—for instance, from
Walleyes, anglers, and double-crested cormorants (Forney
1974; VanDeValk et al. 2002; Rudstam et al. 2004). We did
not explicitly include predator–prey dynamics or introduced
species covariates to our model, but these changes to Oneida
Lake may have differentially impacted small-scale Yellow
Perch density or distribution within the lake.

The use of Bayesian model selection for detecting temporal
dynamics in fisheries data comes with several considerations

FIGURE 4. Relationship between the probability that a site will display a trend in Yellow Perch catch that follows the common trend (fi; solid circles) and the
standardized middepth of the gill-net set (upper panel), the standardized site visit order, and the standardized total Yellow Perch catch in Oneida Lake. The solid
line represents the estimated posterior means from a beta regression model, and the shaded area is the associated 95% credible region.
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that should be accounted for on a case-by-case basis. The first
consideration is the length of the time series that the model
will be describing. Fisheries data (particularly catch) are often
highly variable, and over very short time series, the variability
in the data may prohibit the confident estimation of patterns.
However, this concern is not unique to Bayesian model selec-
tion and is therefore not a weakness of this particular method.
The present modeling approach may also be used in situations
where long-term data or multiple systems are being investi-
gated and when the question has more to do with the inherent
differences among spatial units. A second consideration is that
the f-value is cumulative, meaning that low f-values (unusual
sites) are not necessarily exhibiting recent deviations from the
common dynamic. It is possible, however, to derive temporal
differences between site-specific trends and the common trend
in order to further examine the magnitude of differences for
smaller periods of time (e.g., Figure 3).

As with many trend detection analyses, we envision
Bayesian model selection not necessarily as an endpoint for
resource managers but rather as a tool in the decision making
process. For example, knowledge of which sites differ from a
common trend may be important, but the results may also have
to be viewed in terms of larger changes in the community;
drivers such as introduced species, predator–prey dynamics,
and climate change can impact the catch and abundance of
species. However, knowing which sites are behaving differ-
ently from an overall system dynamic may help to elucidate
the relative impact of other drivers. The Bayesian aspect of
this model selection procedure also frees us from the con-
straints of critical values and permits greater flexibility in the
interpretation of results. For example, although we selected an
f-value cutoff of 0.05, any defensible value may be selected.
We identified a natural break in the distribution of f-values at
around 0.05, but this value can be adjusted based on knowl-
edge of the particular system or can be set at a level deemed
appropriate by managers or stakeholders. Another flexibility
of the f-values is that they can be ordinated for interpretation.
Therefore, rather than identifying a threshold f-value, all sites
can be ranked from “most unusual” to “most common”—an
interpretation that may be practical if resource managers are
limited to a specific number of sites or if managers are inter-
ested in a specific percentage of most unusual sites. Likewise,
we expect that identification of unique temporal patterns might
be of broad interest for cases in which the responses do not
manifest quickly as changes in the overall global average
condition. It may also be useful to use explanatory covariates
to further characterize the f-values, as was done in this study.
We found modest evidence that water column depth helped to
explain the uniqueness of Yellow Perch catch at sites within
Oneida Lake; however, we see this aspect of the model as
having greater appeal for use with systems where more cov-
ariate information can be explored.

Detection of temporal trends remains highly important in
fisheries science because the observed trends often influence a

suite of management decisions ranging from determining
annual differences in stocking programs to developing strate-
gies for management in the face of large-scale regime or
ecosystem shifts. Owing to this broad application and the
limited resources that are typically available to managers,
temporal trend detection and description constitute a growing
area in fisheries and will likely increase in importance as
additional long-term data are made available and as managers
with limited capacity identify their need to re-assess and
prioritize sites for management, remediation, or further
study. Additionally, spatial heterogeneity is ubiquitous in
aquatic habitats, and applications of Bayesian model selection
can easily extend to a wide range of management needs, such
as the selection of marine protected areas, prioritization within
endangered species management, and toxicological and site
remediation scenarios, among others.
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